2PI effective theory at next-to-leading order using the functional renormalization group

被引:8
|
作者
Carrington, M. E. [1 ,2 ]
Friesen, S. A. [1 ]
Meggison, B. A. [1 ,2 ,3 ]
Phillips, C. D. [1 ]
Pickering, D. [4 ]
Sohrabi, K. [1 ]
机构
[1] Brandon Univ, Dept Phys, Brandon, MB R7A 6A9, Canada
[2] Winnipeg Inst Theoret Phys, Winnipeg, MB, Canada
[3] Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada
[4] Brandon Univ, Dept Math, Brandon, MB R7A 6A9, Canada
关键词
NONPERTURBATIVE RENORMALIZATION; ENTROPY PRINCIPLE; SUPERFLUID SYSTEMS; QUANTUM-FIELDS; EQUATIONS; FLOW;
D O I
10.1103/PhysRevD.97.036005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a symmetric scalar theory with quartic coupling in four dimensions. We show that the four-loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the level of the Lagrangian and is therefore conceptually simpler than a standard 2PI calculation, which requires multiple counterterms. We explain how our method can be used to do the corresponding calculation at the 4PI level, which cannot be done using any known method by introducing counterterms.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] N(N)over-bar scattering at next-to-leading order in an effective theory
    Chen, G. Y.
    Ma, J. P.
    PHYSICAL REVIEW D, 2011, 83 (09)
  • [22] Dilute neutron matter on the lattice at next-to-leading order in chiral effective field theory
    Borasoy, B.
    Epelbaum, E.
    Krebs, H.
    Lee, D.
    Meissner, U. -G.
    EUROPEAN PHYSICAL JOURNAL A, 2008, 35 (03): : 357 - 367
  • [23] Galilean-invariant effective field theory for the X(3872) at next-to-leading order
    Braaten, Eric
    He, Li-Ping
    Jiang, Jun
    PHYSICAL REVIEW D, 2021, 103 (03)
  • [24] Top quark decay at next-to-leading order in the standard model effective field theory
    Boughezal, Radja
    Chen, Chien-Yi
    Petriello, Frank
    Wiegand, Daniel
    PHYSICAL REVIEW D, 2019, 100 (05)
  • [25] Hyperon-nucleon interaction at next-to-leading order in chiral effective field theory
    Haidenbauer, J.
    Petschauer, S.
    Kaiser, N.
    Meissner, U. -G.
    Nogga, A.
    Weise, W.
    NUCLEAR PHYSICS A, 2013, 915 : 24 - 58
  • [26] Towards next-to-leading order corrections to the heavy quark potential in the effective string theory
    Hwang, Sungmin
    XIITH QUARK CONFINEMENT AND THE HADRON SPECTRUM, 2017, 137
  • [27] Renormalization of the chiral pion-nucleon Lagrangian beyond next-to-leading order
    Meissner, UG
    Müller, G
    Steininger, S
    ANNALS OF PHYSICS, 2000, 279 (01) : 1 - 64
  • [28] Chiral effective field theory description of the hyperon-nucleon interaction at next-to-leading order
    Petschauer, S.
    MENU 2013 - 13TH INTERNATIONAL CONFERENCE MESON-NUCLEON PHYSICS AND THE STRUCTURE OF THE NUCLEON, 2014, 73
  • [29] Strangeness S =-2 baryon-baryon interaction at next-to-leading order in chiral effective field theory
    Haidenbauer, J.
    Meissner, Ulf-G.
    Petschauer, S.
    NUCLEAR PHYSICS A, 2016, 954 : 273 - 293
  • [30] a?ppp decay at next-to-leading order in chiral perturbation theory
    Di Luzio, Luca
    Piazza, Gioacchino
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)