An algebraic method for solving the multiwave Helmholtz equation

被引:0
|
作者
Pogorui, A. A. [1 ]
Rodriguez-Dagnino, R. M. [1 ]
机构
[1] Monterrey Inst Technol, Monterrey, NL, Mexico
关键词
Helmholtz equation; multiwave equation; Cayley table; hypercomplex numbers;
D O I
10.1080/17476933.2011.605447
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we solve the multiwave Helmholtz equation in two variables by applying hypercomplex numbers defining a commutative algebra. We find Cauchy-Riemann type conditions and we present detailed solutions expressed in terms of two-dimensional Bessel functions for the special case of two-wave Helmholtz equation.
引用
收藏
页码:763 / 769
页数:7
相关论文
共 50 条
  • [41] CONSTRUCTIVE METHOD FOR SOLVING THE EXTERNAL NEUMANN BOUNDARY VALUE PROBLEM FOR THE HELMHOLTZ EQUATION
    Abdullayev, Fuad A.
    Khalilov, Elnur H.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2018, 44 (01): : 62 - 69
  • [42] TAILORED FINITE CELL METHOD FOR SOLVING HELMHOLTZ EQUATION IN LAYERED HETEROGENEOUS MEDIUM
    Huang, Zhongyi
    Yang, Xu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (04) : 381 - 391
  • [43] A MULTILEVEL METHOD FOR SOLVING THE HELMHOLTZ EQUATION: THE ANALYSIS OF THE ONE-DIMENSIONAL CASE
    Andouze, S.
    Goubet, O.
    Poullet, P.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (03) : 365 - 372
  • [44] The Landweber Iterative Regularization Method for Solving the Cauchy Problem of the Modified Helmholtz Equation
    Chen, Yong-Gang
    Yang, Fan
    Ding, Qian
    SYMMETRY-BASEL, 2022, 14 (06):
  • [45] Domain decomposition method and nodal finite element for solving Helmholtz equation.
    Bendali, A
    Boubendir, Y
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (03) : 229 - 234
  • [46] Analysis of a fast method for solving the high frequency Helmholtz equation in one dimension
    Jelena Popovic
    Olof Runborg
    BIT Numerical Mathematics, 2011, 51 : 721 - 755
  • [47] On solving the Helmholtz equation in terms of amplitude and phase
    Wijnant, Y. H.
    de Boer, A.
    PROCEEDINGS OF ISMA 2008: INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING, VOLS. 1-8, 2008, : 4379 - 4384
  • [48] Incremental unknowns preconditioning for solving the Helmholtz equation
    Poullet, Pascal
    Boag, Amir
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (06) : 1396 - 1410
  • [49] Multigrid Method for Solving Helmholtz Equation with Fourth Order Accurate Compact Finite Difference Method
    Ahmed, B. S.
    Monaquel, S. J.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (05): : 1 - 4
  • [50] On a class of preconditioners for solving the discrete Helmholtz equation
    Erlangga, YA
    Vuik, C
    Oosterlee, CW
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 788 - 793