Integration of CPUE data into assessments using the Generalised Yield Model

被引:0
|
作者
Kirkwood, GP
Constable, AJ
机构
[1] Univ London Imperial Coll Sci Technol & Med, Renewable Resources Assessment Grp, Dept Environm Sci & Technol, London SW7 2BP, England
[2] Australian Antarctic Div, Kingston, Tas 7050, Australia
来源
CCAMLR SCIENCE | 2001年 / 8卷
关键词
CPUE; Generalised Yield Model; importance sampling; stock assessment; CCAMLR;
D O I
暂无
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
For the last three years, CCAMLR's Working Group on Fish Stock Assessment (WG-FSA) has accorded high priority to the development of methods of integrating different indicators of stock status into assessments using the Generalised Yield Model (GYM). In this paper, we propose a method, based on the use of importance sampling, for incorporating information on trends in standardised CPUEs into GYM assessments. The use of the method is illustrated using data for Patagonian toothfish (Dissostichus eleginoides) in Subarea 48.3. The method requires only very small adjustments to the computer program implementing the GYM assessments.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
  • [21] Information model for the integration of ecological assessments into virtual product development
    Leibrecht, S
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2006, 11 (02): : 142 - 142
  • [22] Information Model for the Integration of Ecological Assessments into Virtual Product Development
    Sebastian Leibrecht
    The International Journal of Life Cycle Assessment, 2006, 11 : 142 - 142
  • [23] Assessment of prediction model of the CPUE of neon flying squid with different sources of remote sensing data
    Liang Chang
    Yanli Yang
    Xinjun Chen
    Wei Yu
    Yangdong Li
    Guiping Feng
    Yang Zhang
    Acta Oceanologica Sinica, 2023, 42 : 33 - 38
  • [24] Geostatistical integration of yield monitor data and remote sensing improves yield maps
    Dobermann, A
    Ping, JL
    AGRONOMY JOURNAL, 2004, 96 (01) : 285 - 297
  • [25] Generalised analytical model of the transition power densities of the upconversion luminescence and quantum yield
    Matias, J. S.
    Komolibus, K.
    Kho, K. W.
    Konugolu-Venkata-Sekar, S.
    Andersson-Engels, S.
    NANOSCALE ADVANCES, 2023, 5 (12): : 3279 - 3286
  • [26] Assessment of prediction model of the CPUE of neon flying squid with different sources of remote sensing data
    Liang Chang
    Yanli Yang
    Xinjun Chen
    Wei Yu
    Yangdong Li
    Guiping Feng
    Yang Zhang
    ActaOceanologicaSinica, 2023, 42 (06) : 33 - 38
  • [27] A data integration framework for spatial interpolation of temperature observations using climate model data
    Economou, Theo
    Lazoglou, Georgia
    Tzyrkalli, Anna
    Constantinidou, Katiana
    Lelieveld, Jos
    PEERJ, 2023, 11
  • [28] Spectral model for soybean yield estimate using MODIS/EVI data
    Gusso, Anibal (anibalg@unisinos.br), 1600, Springer Verlag (04):
  • [29] Utility of gridded data for yield prediction of wheat using DSSAT model
    Mishra, Adita
    Mehra, B.
    Rawat, Shraddha
    Gautam, S.
    Mishra, Ekta P.
    Singh, Gulab
    JOURNAL OF AGROMETEOROLOGY, 2020, 22 (03): : 377 - 380
  • [30] Map data watermarking using generalised square mask
    Kang, HI
    Kim, KI
    Choi, JU
    ELECTRONICS LETTERS, 2002, 38 (25) : 1645 - 1646