Self-optimizing MPI applications: A simulation-based approach

被引:0
|
作者
Mancini, EP [1 ]
Rak, M [1 ]
Torella, R [1 ]
Villano, U [1 ]
机构
[1] Univ Naples 2, Dip Ingn Informaz, Naples, Italy
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Historically, high performance systems use schedulers and intelligent resource managers in order to optimize system usage and application performance. Most of the times, applications just issue requests of resources to the central system. This centralized approach is an unnecessary constraint for a class of potentially flexible applications, whose resource usage may be modulated as a function of the system status. In this paper we propose a tool which, in a way essentially transparent to final users, lets the application to self-tune in function of the status of the target execution environment. The approach hinges on the use of the MetaPL/HeSSE methodology, i.e., on the use of simulation to predict execution times and skeletal descriptions of the application to describe run-time resource usage.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [21] Self-optimizing web system
    Kato, S
    Shimizu, J
    Hama, T
    Fukuda, T
    Yamane, T
    INDIN 2003: IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, PROCEEDINGS, 2003, : 480 - 482
  • [22] Self-optimizing production systems
    Permin, Eike
    Bertelsmeier, Felix
    Blum, Matthias
    Buetzler, Jennifer
    Haag, Sebastian
    Kuz, Sinem
    Oezdemir, Denis
    Stemmler, Sebastian
    Thombansen, Ulrich
    Schmitt, Robert
    Brecher, Christian
    Schlick, Christopher
    Abel, Dirk
    Poprawe, Reinhart
    Loosen, Peter
    Schulz, Wolfgang
    Schuh, Guenther
    RESEARCH AND INNOVATION IN MANUFACTURING: KEY ENABLING TECHNOLOGIES FOR THE FACTORIES OF THE FUTURE - PROCEEDINGS OF THE 48TH CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2016, 41 : 417 - 422
  • [23] Self-Optimizing AST Interpreters
    Wuerthinger, Thomas
    Woess, Andreas
    Stadler, Lukas
    Duboscq, Gilles
    Simon, Doug
    Wimmer, Christian
    ACM SIGPLAN NOTICES, 2013, 48 (02) : 73 - 82
  • [24] Self-Optimizing Feature Transformation
    Xiao, Meng
    Wang, Dongjie
    Wu, Min
    Liu, Kunpeng
    Xiong, Hui
    Zhou, Yuanchun
    Fu, Yanjie
    arXiv, 2022,
  • [25] Integrated process design and self-optimizing control: A probabilistic approach
    Zhang, Xiaodong
    Cui, Chengtian
    Lyu, Hao
    Sun, Jinsheng
    CHEMICAL ENGINEERING SCIENCE, 2024, 286
  • [26] Self-optimizing control - A survey
    Jaschke, Johannes
    Cao, Yi
    Kariwala, Vinay
    ANNUAL REVIEWS IN CONTROL, 2017, 43 : 199 - 223
  • [27] Self-optimizing AST interpreters
    Wurthinger, Thomas
    Woß, Andreas
    Stadler, Lukas
    Duboscq, Gilles
    Simon, Doug
    Wimmer, Christian
    SPLASH 2012: DLS'12 - Proceedings of the 8th ACM Symposium on Dynamic Languages, 2012, : 73 - 82
  • [28] Self-optimizing surplus function quantum Monte Carlo approach
    Huang, HX
    ACTA PHYSICO-CHIMICA SINICA, 2003, 19 (08) : 742 - 746
  • [29] A new approach to explicit MPC using self-optimizing control
    Manum, Henrik
    Narasimhan, Sridharakumar
    Skogestad, Sigurd
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 435 - 440
  • [30] Self-optimizing neural networks
    Horzyk, A
    Tadeusiewicz, R
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 150 - 155