A GENERALIZED LEAKY INTEGRATE-AND-FIRE NEURON MODEL WITH FAST IMPLEMENTATION METHOD

被引:33
|
作者
Wang, Zhenzhong [1 ]
Guo, Lilin [1 ]
Adjouadi, Malek [1 ]
机构
[1] Florida Int Univ, Ctr Adv Technol & Educ, Miami, FL 33174 USA
基金
美国国家科学基金会;
关键词
Exponential moving average; Hodgkin-Huxley model; leaky integrate-and-fire; neuron model; SPIKING; NETWORKS; ADAPTATION;
D O I
10.1142/S0129065714400048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a new Generalized Leaky Integrate-and-Fire (GLIF) neuron model with variable leaking resistor and bias current in order to reproduce accurately the membrane voltage dynamics of a biological neuron. The accuracy of this model is ensured by adjusting its parameters to the statistical properties of the Hodgkin-Huxley model outputs; while the speed is enhanced by introducing a Generalized Exponential Moving Average method that converts the parameterized kernel functions into pre-calculated lookup tables based on an analytic solution of the dynamic equations of the GLIF model.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Fractional Spiking Neuron: Fractional Leaky Integrate-and-Fire Circuit Described with Dendritic Fractal Model
    Deng, Yabin
    Liu, Bijing
    Huang, Zenan
    Liu, Xiaojie
    He, Shan
    Li, Qiuhong
    Guo, Donghui
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2022, 16 (06) : 1375 - 1386
  • [42] Leaky Integrate-and-Fire Neuron Model-Based SNN Latency Estimation Using FNS
    Hussain, Syed Ali
    Dhanush, Karnatapu Sri Sai
    Eswar, Kothuri Abhinav
    Vaishnavi, Chundru
    Surya, Kaveti Sujith
    Prasad V, P. N. S. B. S. V.
    Samanta, Swagata
    Sanki, Pradyut Kumar
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (07) : 3560 - 3568
  • [43] Leaky Integrate-and-Fire Neuron Model-Based SNN Latency Estimation Using FNS
    Hussain, Syed Ali
    Dhanush, Karnatapu Sri Sai
    Eswar, Kothuri Abhinav
    Vaishnavi, Chundru
    Surya, Kaveti Sujith
    Prasad V, P. N. S. B. S. V.
    Samanta, Swagata
    Sanki, Pradyut Kumar
    JOURNAL OF ELECTRONIC MATERIALS, 2024,
  • [44] Efficiency of the bio-inspired Leaky Integrate-and-Fire neuron for signal coding
    Doutsi, Effrosyni
    Fillatre, Lionel
    Antonini, Marc
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [45] Effects of Noise on Leaky Integrate-and-Fire Neuron Models for Neuromorphic Computing Applications
    Thieu, Thi Kim Thoa
    Melnik, Roderick
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022, PT I, 2022, 13375 : 3 - 18
  • [46] MOMENT-GENERATING FUNCTION OF OUTPUT STREAM OF LEAKY INTEGRATE-AND-FIRE NEURON
    Vidybida, A. K.
    Shchur, O., V
    UKRAINIAN JOURNAL OF PHYSICS, 2021, 66 (03): : 254 - 259
  • [47] A Memristor-Based Leaky Integrate-and-Fire Artificial Neuron With Tunable Performance
    Lin, Jiaming
    Ye, Weixi
    Zhang, Xianghong
    Lian, Qiming
    Wu, Shengyuan
    Guo, Tailiang
    Chen, Huipeng
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (08) : 1231 - 1234
  • [48] Support vector machines for spike pattern classification with a leaky integrate-and-fire neuron
    Ambard, Maxime
    Rotter, Stefan
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2012, 6
  • [49] Optimization of Leaky Integrate-and-Fire Neuron Circuits Based on Nanoporous Graphene Memristors
    Mohanan, Kannan Udaya
    Sattari-Esfahlan, Seyed Mehdi
    Cho, Eou-Sik
    Kim, Chang-Hyun
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 88 - 95
  • [50] Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator
    Kornijcuk, Vladimir
    Lim, Hyungkwang
    Seok, Jun Yeong
    Kim, Guhyun
    Kim, Seong Keun
    Kim, Inho
    Choi, Byung Joon
    Jeong, Doo Seok
    FRONTIERS IN NEUROSCIENCE, 2016, 10