Two-stage quality adaptive fingerprint image enhancement using Fuzzy C-means clustering based fingerprint quality analysis

被引:23
|
作者
Sharma, Ram Prakash [1 ]
Dey, Somnath [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Comp Sci & Engn, Simrol, Madhya Pradesh, India
关键词
Biometrics; Fingerprint image quality; Fuzzy C-means clustering; Fingerprint image enhancement; Fingerprint matching; FILTER; SYSTEM; DIFFUSION; ALGORITHM; FEATURES; NETWORK; WAVELET;
D O I
10.1016/j.imavis.2019.02.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fingerprint recognition techniques are dependent on the quality of fingerprint images. An efficient enhancement algorithm improves the performance of recognition algorithms for poor quality images. Performance improvement of the recognition algorithms will be more if the enhancement process is adaptive to the fingerprint qualities (wet, dry or normal). In this paper, a quality adaptive fingerprint enhancement algorithm is proposed. The proposed fingerprint quality assessment (FQA) algorithm assigns the appropriate quality class of dry, wet, normal dry, normal wet, and good quality using Fuzzy C-means clustering technique to each fingerprint image. It considers seven features namely, mean, moisture, variance, uniformity, contrast, ridge valley area uniformity (RVAU), and ridge valley uniformity (RVU) to cluster the fingerprint images into suitable quality class. Fingerprint images of each quality class undergo through a two-stage fingerprint quality enhancement (FQE) process. In the first stage, a quality adaptive preprocessing (QAP) method is used to preprocess the fingerprint images. Next, fingerprint images are enhanced with Gabor, short-term Fourier transform (SIFT), and oriented diffusion filtering (ODF) based enhancement techniques in the second stage. Experimental evaluations are performed on a quality driven database of FVC 2004. Results show that the performance improvement of 1.54% to 50.62% for NBIS matcher and 1.66% to 8.95% for VeriFinger matcher are achieved while the QAP based approaches are used in comparison to the current state-of-the-art enhancement techniques. In addition, the experimentation is also performed on FVC 2002 database to validate the robustness and efficacy of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] Image retrieval based on modified fuzzy C-means clustering algorithm
    Zhang, PZ
    Fu, P
    Xiao, J
    Meng, D
    Proceedings of the Eighth IASTED International Conference on Internet and Multimedia Systems and Applications, 2004, : 103 - 107
  • [42] MEDICAL IMAGE REGISTRATION BASED ON IMPROVED FUZZY C-MEANS CLUSTERING
    Pan, Meisen
    Jiang, Jianjun
    Zhang, Fen
    Rong, Qiusheng
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2015, 27 (04):
  • [43] Medical Image Segmentation based on Improved Fuzzy C-means Clustering
    Liu, Dongling
    Ma, Ling
    Chen, Hui
    Meng, Ke
    2017 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2017, : 406 - 410
  • [44] Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering
    Xu Jindong
    Zhao Tianyu
    Feng Guozheng
    Ou Shifeng
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (07) : 2079 - 2086
  • [45] |Histogram-based Fuzzy C-Means Clustering for Image Binarization
    Fang, Shun
    Chang, Xin
    Wu, Shiqian
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1432 - 1437
  • [46] Image Segmentation Based on the Fuzzy C-Means Clustering and Rough Sets
    Li, Yunsong
    Zhang, Guofeng
    Zhang, Huili
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 751 - 754
  • [47] Real-time fingerprint image enhancement with a two-stage algorithm and block–local normalization
    Marko Kočevar
    Bojan Kotnik
    Amor Chowdhury
    Zdravko Kačič
    Journal of Real-Time Image Processing, 2017, 13 : 773 - 782
  • [48] AN UNSUPERVISED COLOR-TEXTURE SEGMENTATION USING TWO-STAGE FUZZY c-MEANS ALGORITHM
    Xu, Shaoping
    Hu, Lingyan
    Li, Chunquan
    Yang, Xiaohui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (02)
  • [49] Recognition of Power Quality Disturbances Using Discrete Wavelet Transform and Fuzzy C-means Clustering
    Mahela, Om Prakash
    Sharma, Umesh Kumar
    Manglani, Tanuj
    2018 IEEE 8TH POWER INDIA INTERNATIONAL CONFERENCE (PIICON), 2018,
  • [50] Recognition of Power Quality Disturbances Using S-Transform and Fuzzy C-Means Clustering
    Mahela, Om Prakash
    Shaik, Abdul Gafoor
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COGENERATION, SMALL POWER PLANTS AND DISTRICT ENERGY (ICUE 2016), 2016,