Coordinate Descent for Variance-Component Models

被引:0
|
作者
Mathur, Anant [1 ]
Moka, Sarat [2 ]
Botev, Zdravko [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Macquarie Univ, Sch Math & Phys Sci, Sydney, NSW 2109, Australia
关键词
linear-mixed models; maximum likelihood estimation; numerical optimization; MAXIMUM-LIKELIHOOD-ESTIMATION; MIXED-EFFECTS MODELS; NEWTON-RAPHSON; ALGORITHMS; CONVERGENCE;
D O I
10.3390/a15100354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variance-component models are an indispensable tool for statisticians wanting to capture both random and fixed model effects. They have applications in a wide range of scientific disciplines. While maximum likelihood estimation (MLE) is the most popular method for estimating the variance-component model parameters, it is numerically challenging for large data sets. In this article, we consider the class of coordinate descent (CD) algorithms for computing the MLE. We show that a basic implementation of coordinate descent is numerically costly to implement and does not easily satisfy the standard theoretical conditions for convergence. We instead propose two parameter-expanded versions of CD, called PX-CD and PXI-CD. These novel algorithms not only converge faster than existing competitors (MM and EM algorithms) but are also more amenable to convergence analysis. PX-CD and PXI-CD are particularly well-suited for large data sets-namely, as the scale of the model increases, the performance gap between the parameter-expanded CD algorithms and the current competitor methods increases.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A DIAGNOSTIC FOR EVALUATING VARIANCE-COMPONENT ESTIMATES
    HOCKING, RR
    BIOMETRICS, 1984, 40 (04) : 1192 - 1192
  • [2] Semiparametric variance-component models for linkage and association analyses of censored trait data
    Diao, G.
    Lin, D. Y.
    GENETIC EPIDEMIOLOGY, 2006, 30 (07) : 570 - 581
  • [3] VARIANCE-COMPONENT ESTIMATION FROM HUMAN SIBSHIP DATA
    DONNER, A
    KOVAL, JJ
    BIOMETRICS, 1983, 39 (03) : 599 - 605
  • [4] VARIANCE-COMPONENT ANALYSIS OF FERTILITY AND HATCHABILITY IN WHITE LEGHORNS
    CHAUDHARY, ML
    SANDHU, JS
    BRAH, GS
    ZEITSCHRIFT FUR TIERZUCHTUNG UND ZUCHTUNGSBIOLOGIE-JOURNAL OF ANIMAL BREEDING AND GENETICS, 1984, 101 (05): : 359 - 366
  • [5] VARIANCE-COMPONENT ESTIMATION WITH MODEL-BASED DIAGNOSTICS
    HOCKING, RR
    GREEN, JW
    BREMER, RH
    TECHNOMETRICS, 1989, 31 (02) : 227 - 239
  • [6] A Variance-Component Framework for Pedigree Analysis of Continuous and Categorical Outcomes
    Epstein, Michael P.
    Hunter, Jessica E.
    Allen, Emily G.
    Sherman, Stephanie L.
    Lin, Xihong
    Boehnke, Michael
    STATISTICS IN BIOSCIENCES, 2009, 1 (02) : 181 - 198
  • [7] A Variance-Component Framework for Pedigree Analysis of Continuous and Categorical Outcomes
    Michael P. Epstein
    Jessica E. Hunter
    Emily G. Allen
    Stephanie L. Sherman
    Xihong Lin
    Michael Boehnke
    Statistics in Biosciences, 2009, 1 (2) : 181 - 198
  • [8] PARTIAL AND CONDITIONAL MAXIMUM-LIKELIHOOD FOR VARIANCE-COMPONENT ESTIMATION
    XU, S
    ATCHLEY, WR
    MUIR, WM
    JOURNAL OF ANIMAL BREEDING AND GENETICS-ZEITSCHRIFT FUR TIERZUCHTUNG UND ZUCHTUNGSBIOLOGIE, 1994, 111 (03): : 178 - 188
  • [9] Variance-Component Based Sparse Signal Reconstruction and Model Selection
    Qiu, Kun
    Dogandzic, Aleksandar
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (06) : 2935 - 2952
  • [10] Variance-component modeling in the analysis of receiver operating characteristic index estimates
    Roe, CA
    Metz, CE
    ACADEMIC RADIOLOGY, 1997, 4 (08) : 587 - 600