BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems

被引:19
|
作者
Li, Xiang [1 ]
Du, Gang [1 ]
机构
[1] Tianjin Univ, Sch Management, Tianjin 300072, Peoples R China
关键词
Multi-objective optimization; Constrained multi-objective optimization; Inequality constraint; Constraint handling; Genetic algorithms; Boundary simulation method; Binary search method; Population diversity; Pareto optimum; Pareto set; Pareto front; Trie-tree; Rtrie-tree; Atrie-tree; EVOLUTIONARY ALGORITHMS;
D O I
10.1016/j.cor.2012.07.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Most of the existing multi-objective genetic algorithms were developed for unconstrained problems, even though most real-world problems are constrained. Based on the boundary simulation method and trie-tree data structure, this paper proposes a hybrid genetic algorithm to solve constrained multi-objective optimization problems (CMOPs). To validate our approach, a series of constrained multi-objective optimization problems are examined, and we compare the test results with those of the well-known NSGA-II algorithm, which is representative of the state of the art in this area. The numerical experiments indicate that the proposed method can clearly simulate the Pareto front for the problems under consideration. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:282 / 302
页数:21
相关论文
共 50 条
  • [31] An evolutionary algorithm for constrained multi-objective optimization
    Jiménez, F
    Gómez-Skarmeta, AF
    Sánchez, G
    Deb, K
    [J]. CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1133 - 1138
  • [32] A novel multi-level population hybrid search evolution algorithm for constrained multi-objective optimization problems
    Li, Chaoqun
    Liu, Yang
    Zhang, Yao
    Xu, Mengying
    Xiao, Jing
    Zhou, Jie
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 9071 - 9087
  • [33] A Comparative Study of Constrained Multi-objective Evolutionary Algorithms on Constrained Multi-objective Optimization Problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Fang, Yi
    Lu, Jiewei
    Wei, Caimin
    [J]. 2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 209 - 216
  • [34] A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization
    Luo, Jianping
    Yang, Yun
    Liu, Qiqi
    Li, Xia
    Chen, Minrong
    Gao, Kaizhou
    [J]. INFORMATION SCIENCES, 2018, 448 : 164 - 186
  • [35] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [36] Solving Constrained Multi-objective Optimization Problems Using Non-dominated Ranked Genetic Algorithm
    Al Jadaan, Omar
    Rao, C. R.
    Rajamani, Lakshmi
    [J]. 2009 THIRD ASIA INTERNATIONAL CONFERENCE ON MODELLING & SIMULATION, VOLS 1 AND 2, 2009, : 113 - +
  • [37] Multi-objective optimization for site location problems through hybrid genetic algorithm with neural networks
    Shimizu, Y
    [J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1999, 32 (01) : 51 - 58
  • [38] Multi-objective optimization for site location problems through hybrid genetic algorithm with neural networks
    Toyohashi Univ of Technology, Toyohashi, Japan
    [J]. J Chem Eng Jpn, 1 (51-58):
  • [39] An Improved Multi-Objective Genetic Algorithm for Solving Multi-objective Problems
    Hsieh, Sheng-Ta
    Chiu, Shih-Yuan
    Yen, Shi-Jim
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 1933 - 1941
  • [40] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    [J]. SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891