Momentum and pseudomomentum in a shallow water equation

被引:0
|
作者
Hanna, J. A. [1 ]
机构
[1] Univ Nevada, Mech Engn, 664 N Virginia St 0312, Reno, NV 89557 USA
关键词
PRINCIPLE;
D O I
10.1063/5.0120645
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A basic shallow water system with variable topography is analyzed from the point of view of a Lagrangian derivation of momentum, energy, and pseudomomentum balances. A two-dimensional action and associated momentum equation are derived. The latter is further manipulated to derive additional equations for energy and pseudomomentum. This revealed structure emphasizes broken symmetries in space and a reference configuration and preserved symmetry in time. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Global weak solutions for a shallow water equation
    Coclite, G. M.
    Holden, H.
    Karlsen, K. H.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 389 - 396
  • [32] Global weak solutions for a shallow water equation
    Constantin, A
    Escher, J
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1998, 47 (04) : 1527 - 1545
  • [33] Wave breaking for a periodic shallow water equation
    Zhou, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (02) : 591 - 604
  • [34] CONSERVATION LAWS OF SHALLOW-WATER EQUATION
    SU, CH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (10): : 1289 - 1289
  • [35] On a Shallow Water Equation Perturbed in Schwartz Class
    Xiang’ou Zhu
    Mathematical Physics, Analysis and Geometry, 2012, 15 : 317 - 329
  • [36] ON A SHALLOW-WATER WAVE-EQUATION
    CLARKSON, PA
    MANSFIELD, EL
    NONLINEARITY, 1994, 7 (03) : 975 - 1000
  • [37] Global Weak Solutions for a Shallow Water Equation
    Adrian Constantin
    Luc Molinet
    Communications in Mathematical Physics, 2000, 211 : 45 - 61
  • [38] Global weak solutions for a shallow water equation
    Constantin, A
    Molinet, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) : 45 - 61
  • [39] An extended linear shallow-water equation
    Porter, R.
    JOURNAL OF FLUID MECHANICS, 2019, 876 : 413 - 427
  • [40] Riemann Problem for Shallow Water Equation with Vegetation
    Ion, Stelian
    Marinescu, Dorin
    Cruceanu, Stefan-Gicu
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (02): : 145 - 173