Thermoelectric Fabrics: Toward Power Generating Clothing

被引:231
|
作者
Du, Yong [1 ]
Cai, Kefeng [2 ,3 ]
Chen, Song [2 ,3 ]
Wang, Hongxia [1 ]
Shen, Shirley Z. [4 ]
Donelson, Richard [4 ]
Lin, Tong [1 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[2] Tongji Univ, Minist Educ, Key Lab Adv Civil Engn Mat, Shanghai 201804, Peoples R China
[3] Tongji Univ, Sch Mat Sci & Engn, Funct Mat Res Lab, Shanghai 201804, Peoples R China
[4] CSIRO Mfg Flagship, Clayton, Vic 3169, Australia
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
BODY-SURFACE-AREA; PERFORMANCE; CONDUCTIVITY; OPTIMIZATION; TEMPERATURE; FIGURE;
D O I
10.1038/srep06411
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (Delta T) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Generating power of a thermoelectric generator under periodically alternating temperature gradients
    O. Yamashita
    H. Odahara
    Applied Physics A, 2006, 85 : 45 - 51
  • [22] Graphene Field Effect Transistor for Generating On-chip Thermoelectric Power
    Banadaki, Yaser M.
    Hou, Hsuan-Chao
    Sharifi, Safura
    NANOSENSORS, BIOSENSORS, INFO-TECH SENSORS AND 3D SYSTEMS 2017, 2017, 10167
  • [23] A portable thermoelectric-power-generating module composed of oxide devices
    Funahashi, R
    Mikami, M
    Mihara, T
    Urata, S
    Ando, N
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (06)
  • [24] Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
    Bell, Lon E.
    SCIENCE, 2008, 321 (5895) : 1457 - 1461
  • [25] Vapor grown carbon nanofiber based cotton fabrics with negative thermoelectric power
    Paleo, A. J.
    Vieira, E. M. F.
    Wan, K.
    Bondarchuk, O.
    Cerqueira, M. F.
    Bilotti, E.
    Melle-Franco, M.
    Rocha, A. M.
    CELLULOSE, 2020, 27 (15) : 9091 - 9104
  • [26] Vapor grown carbon nanofiber based cotton fabrics with negative thermoelectric power
    A. J. Paleo
    E. M. F. Vieira
    K. Wan
    O. Bondarchuk
    M. F. Cerqueira
    E. Bilotti
    M. Melle-Franco
    A. M. Rocha
    Cellulose, 2020, 27 : 9091 - 9104
  • [27] 3D-Printed Flexible Phase-Change Nonwoven Fabrics toward Multifunctional Clothing
    Yang, Zhengpeng
    Ma, Yuyan
    Jia, Shengmin
    Zhang, Chunjing
    Li, Ping
    Zhang, Yongyi
    Li, Qingwen
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 7283 - 7291
  • [28] Toward tiny high-power-density thermoelectric harvesters
    He, Hailong
    Wu, Yi
    Niu, Chunping
    Ren, Hongrui
    Xiong, Tao
    Yu, Ke
    Zhang, Yuqian
    Liang, Senhao
    Rong, Mingzhe
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [29] GENERATING SEAMS AND WRINKLES FOR VIRTUAL CLOTHING
    Baciu, George
    Ma, Liang
    Hu, Jinlian
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2008, 8 (02) : 281 - 297
  • [30] Ageing Simulation of Fabrics Destined for Protective Clothing
    Lezak, Krzysztof
    Frydrych, Iwona
    FIBRES & TEXTILES IN EASTERN EUROPE, 2011, 19 (02) : 54 - 60