Explicit Arithmetic on Abelian Varieties

被引:1
|
作者
Murty, V. Kumar [1 ]
Sastry, Pramathanath [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Chennai Math Inst, Sipcot IT Pk, Kanchipuram 603103, Tamil Nadu, India
关键词
D O I
10.1007/978-3-319-97379-1_15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe linear algebra algorithms for doing arithmetic on an abelian variety which is dual to a given abelian variety. The ideas are inspired by Khuri-Makdisi's algorithms for Jacobians of curves. Let chi(0) be the Euler characteristic of the line bundle associated with an ample divisor H on an abelian variety A. The Hilbert scheme of effective divisors D such that O (D) has Hilbert polynomial (1 + t)(g) chi(0) is a projective bundle (with fibres P chi 0-1) over the dual abelian variety (A) over cap via the Abel-Jacobi map. This Hilbert scheme can be embedded in a Grassmannian, so that points on it (and hence, via the above-mentioned Abel-Jacobi map, points on (A) over cap can be represented by matrices. Arithmetic on (A) over cap can be worked out by using linear algebra algorithms on the representing matrices.
引用
收藏
页码:317 / 374
页数:58
相关论文
共 50 条
  • [31] SPLITTING OF ABELIAN VARIETIES
    Murty, V. Kumar
    Zong, Ying
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (04) : 511 - 519
  • [32] ON A CHARACTERIZATION OF ABELIAN VARIETIES
    ASAEDA, Y
    PROCEEDINGS OF THE JAPAN ACADEMY, 1963, 39 (03): : 142 - &
  • [33] Characterization of abelian varieties
    Jungkai A. Chen
    Christopher D. Hacon
    Inventiones mathematicae, 2001, 143 : 435 - 447
  • [34] On syzygies of Abelian varieties
    Rubei, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) : 2569 - 2579
  • [35] Characterization of abelian varieties
    Chen, JA
    Hacon, CD
    INVENTIONES MATHEMATICAE, 2001, 143 (02) : 435 - 447
  • [36] Reduction of abelian varieties
    Silverberg, A
    Zarhin, YG
    ARITHMETIC AND GEOMETRY OF ALGEBRAIC CYCLES, 2000, 548 : 495 - 513
  • [37] Subvarieties of abelian varieties
    Izadi, E
    APPLICATIONS OF ALGEBRAIC GEOMETRY TO CODING THEORY, PHYSICS AND COMPUTATION, 2001, 36 : 207 - 214
  • [38] Abelian varieties.
    Lepschetz, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1919, 168 : 758 - 761
  • [39] Hypersymmetric abelian varieties
    Chai, Ching-Li
    Oort, Frans
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2006, 2 (01) : 1 - 27
  • [40] Splitting of Abelian Varieties
    Murty, V. Kumar
    Patankar, Vijay M.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008