A characterization of hybridized mixed methods for second order elliptic problems

被引:115
|
作者
Cockburn, B
Gopalakrishnan, J
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
mixed finite elements; hybrid methods; elliptic problems;
D O I
10.1137/S0036142902417893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a new characterization of the approximate solution given by hybridized mixed methods for second order self-adjoint elliptic problems. We apply this characterization to obtain an explicit formula for the entries of the matrix equation for the Lagrange multiplier unknowns resulting from hybridization. We also obtain necessary and sufficient conditions under which the multipliers of the Raviart-Thomas and the Brezzi-Douglas-Marini methods of similar order are identical.
引用
收藏
页码:283 / 301
页数:19
相关论文
共 50 条
  • [1] Hierarchical mixed hybridized methods for elliptic problems
    Causin, Paola
    Sacco, Riccardo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (9-12) : 1061 - 1073
  • [2] Multilevel preconditioners for mixed methods for second order elliptic problems
    Chen, ZX
    Ewing, RE
    Lazarov, RD
    Maliassov, S
    Kuznetsov, YA
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1996, 3 (05) : 427 - 453
  • [3] A NEW HYBRIDIZED MIXED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS
    Zaghdani, Abdelhamid
    Sayari, Sayed
    El Hajji, Miled
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (04): : 501 - 518
  • [4] Domain decomposition algorithms for mixed methods for second order elliptic problems
    Chen, ZX
    Ewing, RE
    Lazarov, R
    MATHEMATICS OF COMPUTATION, 1996, 65 (214) : 467 - 490
  • [5] Mixed methods for nonlinear second-order elliptic problems in three variables
    Park, Eun-Jae
    Numerical Methods for Partial Differential Equations, 1996, 12 (01):
  • [7] High order immersed hybridized difference methods for elliptic interface problems
    Jeon, Youngmok
    JOURNAL OF NUMERICAL MATHEMATICS, 2024, 32 (02) : 139 - 156
  • [8] Mixed covolume methods for quasi-linear second-order elliptic problems
    Kwak, DY
    Kim, KY
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) : 1057 - 1072
  • [9] MIXED VIRTUAL ELEMENT METHODS FOR GENERAL SECOND ORDER ELLIPTIC PROBLEMS ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Brezzi, Franco
    Marini, Luisa Donatella
    Russo, Alessandro
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 727 - 747
  • [10] Expanded mixed finite element methods for quasilinear second order elliptic problems, II
    Chen, ZX
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (04): : 501 - 520