PCA-SVM based Fault Prognosis for Flue Gas Turbine

被引:3
|
作者
Ma, Jie [1 ]
Wang, Qiuyan [1 ]
Dong, Aiming
机构
[1] Beijing Informat Sci & Technol Univ, Dept Automat, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
fault prognosis; statistical process monitoring; principal component analysis; squared prediction error; SVM model;
D O I
10.1109/IMCCC.2012.307
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a multivariate fault prognosis approach based on statistical process monitoring (SPM) methods and time series prediction for flue gas turbine was proposed. A principal component analysis (PCA) model using sample data under normal state was built. Firstly, fault is detected by squared prediction error (SPE) index, then predicted by SVM model. With development of fault process, the SPE will produce a corres ponding change and carry important fault information, so calculate statistics of SPE can be characterized and predict the trend of fault and level. A case study on the flue gas turbine shows the efficiency of the proposed approach.
引用
收藏
页码:1304 / 1308
页数:5
相关论文
共 50 条
  • [31] Accurate Lithography Hotspot Detection based on PCA-SVM Classifier with Hierarchical Data Clustering
    Gao, Jhih-Rong
    Yu, Bei
    Pan, David Z.
    DESIGN-PROCESS-TECHNOLOGY CO-OPTIMIZATION FOR MANUFACTURABILITY VIII, 2014, 9053
  • [32] Classification model of ice transport and accumulation in front of channel gates based on PCA-SVM
    Liang N.
    Tuo Y.
    Deng Y.
    Jia Y.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (03): : 703 - 713
  • [33] Identification of Pork Parts Based on LIBS Technology Combined With PCA-SVM Machine Learning
    Xu Yu-ting
    Sun Hao-ran
    Gao Xun
    Guo Kai-min
    Lin Jing-quan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (11) : 3572 - 3576
  • [34] Terahertz-Spectral Identification of Organic Compounds Based on Differential PCA-SVM Method
    Liu Junxiu
    Du Bin
    Deng Yuqiang
    Zhang Jianwen
    Zhu Haijiang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (06):
  • [35] Research on refrigerant leakage identification for heat pump system based on PCA-SVM models
    Yu X.
    Wu J.
    Gao Y.
    Huagong Xuebao/CIESC Journal, 2020, 71 (07): : 3151 - 3164
  • [36] 基于PCA-SVM方法的点焊质量评估
    张宏杰
    侯妍妍
    焊接学报, 2009, 30 (04) : 97 - 100+118
  • [37] Diagnosis of Cucumber Diseases and Insect Pests by Fluorescence Spectroscopy Technology Based on PCA-SVM
    Yang Hao-yu
    Yu Hai Ye
    Liu Xu
    Zhang Lei
    Sui Yuan-yuan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (11) : 3018 - 3021
  • [38] 基于PCA-SVM的带钢表面缺陷识别
    陈小改
    机械设计与制造工程, 2017, 46 (06) : 100 - 103
  • [39] 企业财务预警PCA-SVM模型研究
    李贺
    冯天瑾
    丁香乾
    张红兰
    计算机工程, 2006, (09) : 233 - 235+238
  • [40] 利用PCA-SVM的大坝变形预测研究
    吕开云
    鲁铁定
    测绘科学 , 2011, (01) : 73 - 74