Promoter Orientation within an AAV-CRISPR Vector Affects Cas9 Expression and Gene Editing Efficiency

被引:6
|
作者
Fry, Lewis E. [1 ,2 ,3 ]
Peddle, Caroline F. [1 ,2 ]
Stevanovic, Marta [1 ,2 ]
Barnard, Alun R. [1 ,2 ,3 ]
McClements, Michelle E. [1 ,2 ]
MacLaren, Robert E. [1 ,2 ,3 ]
机构
[1] Univ Oxford, Nuffield Lab Ophthalmol, Nuffield Dept Clin Neurosci, Oxford, England
[2] Univ Oxford, NIHR Oxford Biomed Res Ctr, Oxford, England
[3] Oxford Univ Hosp NHS Fdn Trust, Oxford Eye Hosp, Oxford, England
来源
CRISPR JOURNAL | 2020年 / 3卷 / 04期
关键词
MOUSE MODEL; TRANSCRIPTIONAL INTERFERENCE; THERAPY; MUSCLE; LIVER; EFFICACY; GENOMES; SYSTEM;
D O I
10.1089/crispr.2020.0021
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Adeno-associated virus (AAV) vectors have been widely adopted for delivery of CRISPR-Cas components, especially for therapeutic gene editing. For a single vector system, both the Cas9 and guide RNA (gRNA) are encoded within a single transgene, usually from separate promoters. Careful design of this bi-cistronic construct is required due to the minimal packaging capacity of AAV. We investigated how placement of the U6 promoter expressing the gRNA on the reverse strand to SaCas9 driven by a cytomegalovirus promoter affected gene editing rates compared to placement on the forward strand. We show that orientation in the reverse direction reduces editing rates from an AAV vector due to reduced transcription of both SaCas9 and guide RNA. This effect was observed only following AAV transduction; it was not seen following plasmid transfection. These results have implications for the design of AAV-CRISPR vectors, and suggest that results from optimizing plasmid transgenes may not translate when delivered via AAV.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 50 条
  • [41] Fanconi Anemia Gene Editing by the CRISPR/Cas9 System
    Osborn, Mark J.
    Gabriel, Richard
    Webber, Beau R.
    DeFeo, Anthony P.
    McElroy, Amber N.
    Jarjour, Jordan
    Starker, Colby G.
    Wagner, John E.
    Joung, J. Keith
    Voytas, Daniel F.
    von Kalle, Christof
    Schmidt, Manfred
    Blazar, Bruce R.
    Tolar, Jakub
    HUMAN GENE THERAPY, 2015, 26 (02) : 114 - 126
  • [42] Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology
    Zoe A. Stewart
    Current Transplantation Reports, 2022, 9 : 268 - 275
  • [43] Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology
    Stewart, Zoe A.
    CURRENT TRANSPLANTATION REPORTS, 2022, 9 (04) : 268 - 275
  • [44] CRISPR/Cas9 gene editing special issue INTRODUCTION
    Doench, John G.
    FEBS JOURNAL, 2016, 283 (17) : 3160 - 3161
  • [45] An efficient sorghum protoplast assay for transient gene expression and gene editing by CRISPR/Cas9
    Meng, Ruirui
    Wang, Chenchen
    Wang, Lihua
    Liu, Yanlong
    Zhan, Qiuwen
    Zheng, Jiacheng
    Li, Jieqin
    PEERJ, 2020, 8
  • [46] CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say
    Anderson, Michelle E.
    Mavica, Jessica
    Shackleford, Lewis
    Flis, Ilona
    Fochler, Sophia
    Basu, Sanjay
    Alphey, Luke
    PLOS ONE, 2019, 14 (11):
  • [47] Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy
    Wang, Yanan
    Jiang, Haibin
    Li, Mopu
    Xu, Zidi
    Xu, Hang
    Chen, Yuetong
    Chen, Kepei
    Zheng, Weihong
    Lin, Wei
    Liu, Zhiming
    Lin, Zhenlang
    Zhang, Min
    GENE, 2024, 927
  • [48] AAV-CRISPR/Cas9 Gene Editing Preserves Long-Term Vision in the P23H Rat Model of Autosomal Dominant Retinitis Pigmentosa
    Shahin, Saba
    Xu, Hui
    Lu, Bin
    Mercado, Augustus
    Jones, Melissa K.
    Bakondi, Benjamin
    Wang, Shaomei
    PHARMACEUTICS, 2022, 14 (04)
  • [49] Improving the Genome Editing Efficiency of CRISPR/Cas9 in Melon and Watermelon
    Wang, Zhuanrong
    Wan, Lili
    Ren, Jian
    Zhang, Na
    Zeng, Hongxia
    Wei, Jiaqi
    Tang, Mi
    CELLS, 2024, 13 (21)
  • [50] Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency
    Hiranniramol, Kasidet
    Chen, Yuhao
    Liu, Weijun
    Wang, Xiaowei
    BIOINFORMATICS, 2020, 36 (09) : 2684 - 2689