Introducing AMV (Animal Movement Visualizer), a visualization tool for animal movement data from satellite collars and radiotelemetry

被引:3
|
作者
Kavathekar, Devtulya [1 ]
Mueller, Thomas [1 ]
Fagan, William F. [1 ]
机构
[1] Univ Maryland, Dept Biol, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Satellite collar data; ARGOS-GPS; Radiotelemetry; Migration; Nomadism; Range-residency;
D O I
10.1016/j.ecoinf.2012.12.005
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Researchers and wildlife managers often want to understand how landscape features influence an individual animal's movement. Animal movement data, whether derived from satellite collars, cellphone/hydrophone nets, or radiotelemetry studies, provide a range of information on movement including large-scale displacements and small-scale changes in orientation and velocity. To help contextualize such data and facilitate their interpretation, we developed a Java informatics tool, Animal Movement Visualizer v1.0. Built on the NASA World Wind v1.2 development kit, our free, downloadable software can display simultaneously the pathways of multiple animals moving against a backdrop of digital imagery of the Earth's surface, allowing researchers and managers to observe how multiple individuals move about with respect to one another in relative time. The program can accommodate datasets with irregularly timed relocations and relocation intervals that vary among individuals. The software displays the Earth's surface in a scalable way, facilitating visualization of specific landscape features. To illustrate possible uses for AMV, we provide a sample dataset for movement tracks of Mongolian gazelles (Procapra gutturosa) moving across steppe habitat. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [41] A hierarchical machine learning framework for the analysis of large scale animal movement data
    Torney, Colin J.
    Morales, Juan M.
    Husmeier, Dirk
    MOVEMENT ECOLOGY, 2021, 9 (01)
  • [42] Classification of anomalous diffusion in animal movement data using power spectral analysis
    Vilk, Ohad
    Aghion, Erez
    Nathan, Ran
    Toledo, Sivan
    Metzler, Ralf
    Assaf, Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (33)
  • [43] Animal Movement: Statistical Models for Telemetry Data by Hooten, Johnson, McClintock and Morales
    Jason Matthiopoulos
    Journal of Agricultural, Biological and Environmental Statistics, 2017, 22 (3) : 423 - 425
  • [44] Revisitation analysis uncovers spatio-temporal patterns in animal movement data
    Bracis, Chloe
    Bildstein, Keith L.
    Mueller, Thomas
    ECOGRAPHY, 2018, 41 (11) : 1801 - 1811
  • [45] Accounting for animal movement in estimation of resource selection functions: sampling and data analysis
    Forester, James D.
    Im, Hae Kyung
    Rathouz, Paul J.
    ECOLOGY, 2009, 90 (12) : 3554 - 3565
  • [46] Big-data approaches lead to an increased understanding of the ecology of animal movement
    Nathan, Ran
    Monk, Christopher T.
    Arlinghaus, Robert
    Adam, Timo
    Alos, Josep
    Assaf, Michael
    Baktoft, Henrik
    Beardsworth, Christine E.
    Bertram, Michael G.
    Bijleveld, Allert, I
    Brodin, Tomas
    Brooks, Jill L.
    Campos-Candela, Andrea
    Cooke, Steven J.
    Gjelland, Karl O.
    Gupte, Pratik R.
    Harel, Roi
    Hellstrom, Gustav
    Jeltsch, Florian
    Killen, Shaun S.
    Klefoth, Thomas
    Langrock, Roland
    Lennox, Robert J.
    Lourie, Emmanuel
    Madden, Joah R.
    Orchan, Yotam
    Pauwels, Ine S.
    Riha, Milan
    Roeleke, Manuel
    Schlagel, Ulrike E.
    Shohami, David
    Signer, Johannes
    Toledo, Sivan
    Vilk, Ohad
    Westrelin, Samuel
    Whiteside, Mark A.
    Jaric, Ivan
    SCIENCE, 2022, 375 (6582) : 734 - +
  • [47] An algorithmic approach for analysis of animal movement with granular computing in relation with data mining
    Rawat, Neelam
    Sodhi, J. S.
    Tyagi, Rajesh K.
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 224 - 229
  • [48] Characteristics of animal movement and environmental data for dynamic ocean management: Insights and guidance
    McDonnell, Laura H.
    Hazen, Elliott L.
    Mach, Katharine J.
    CONSERVATION SCIENCE AND PRACTICE, 2024, 6 (12)
  • [49] A Quantitative Framework for Identifying Patterns of Route-Use in Animal Movement Data
    Alavi, Shauhin E.
    Vining, Alexander Q.
    Caillaud, Damien
    Hirsch, Ben T.
    Havmoller, Rasmus Worsoe
    Havmoller, Linnea W.
    Kays, Roland
    Crofoot, Margaret C.
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2022, 9
  • [50] Stability and manoeuvrability in animal movement: lessons from biology, modelling and robotics
    Biewener, Andrew A.
    Bomphrey, Richard J.
    Daley, Monica A.
    Ijspeert, Auke J.
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2022, 289 (1967)