Binary Fish Migration Optimization for Feature Selection Using Time-Varying Transfer Function

被引:1
|
作者
Dou, Zhi-Chao [1 ]
Zhuang, Zhongjie [1 ]
Kong, Ling-Ping [2 ]
Pan, Jeng-Shyang [1 ,3 ]
Chu, Shu-Chuan [1 ,4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] VSB Tech Univ Ostrava, Ostrava, Czech Republic
[3] Chaoyang Univ Technol, Dept Informat Management, 168 Jifeng E Rd, Taichung 413310, Taiwan
[4] Flinders Univ S Australia, Coll Sci & Engn, 1284 South Rd, Clovelly Park, SA 5042, Australia
基金
中国国家自然科学基金;
关键词
UNIT COMMITMENT; SWARM; ALGORITHM; POLLEN;
D O I
10.1007/978-981-19-1057-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fish migration optimization (FMO) is an intelligent optimization algorithm based on fish migration behavior. It has been proven superior performance in terms of convergence, accuracy, and speed. Binary fish migration optimization (BFMO) is the binary version of FMO, which is designed to solve generator set assembly problem. In this paper, time-varying binary fish migration optimization (T-v-BFMO) is proposed to balance the exploration and exploitation of the BFMO. Then, experiments are made on various phi(max) and phi(min). The exact value of phi(max) and phi(min) is selected by comparing the performance of various phi values on 23 standard benchmark functions. In the end, T-v-BFMO successfully implements feature selection on UCI datasets.
引用
收藏
页码:311 / 321
页数:11
相关论文
共 50 条
  • [31] Simultaneous Optimization of Positioning and Vibration Controls Using Time-Varying Criterion Function
    Hara, Susumu
    Yoshida, Kazuo
    [J]. Journal of Robotics and Mechatronics, 1994, 6 (04) : 278 - 284
  • [32] Feature selection using binary monarch butterfly optimization
    Sun, Lin
    Si, Shanshan
    Zhao, Jing
    Xu, Jiucheng
    Lin, Yaojin
    Lv, Zhiying
    [J]. APPLIED INTELLIGENCE, 2023, 53 (01) : 706 - 727
  • [33] Feature selection using binary monarch butterfly optimization
    Lin Sun
    Shanshan Si
    Jing Zhao
    Jiucheng Xu
    Yaojin Lin
    Zhiying Lv
    [J]. Applied Intelligence, 2023, 53 : 706 - 727
  • [34] Optimization of dynamic characteristics for Time-Controlled Grinding using time-varying removal function
    Sun, Zizhou
    Dai, Yifan
    Hu, Hao
    Guan, Chaoliang
    Lai, Tao
    Li, Zelong
    Chen, Fulei
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2024, 119 : 1033 - 1048
  • [35] A correlation attack on the binary sequence generators with time-varying output function
    Mihaljevic, MJ
    [J]. ADVANCES IN CRYPTOLOGY - ASIACRYPT '94, 1995, 917 : 67 - 79
  • [36] Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection
    Al-Tashi, Qasem
    Kadir, Said Jadid Abdul
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    [J]. IEEE ACCESS, 2019, 7 : 39496 - 39508
  • [37] A study of transfer function generation for time-varying volume data
    Jankun-Kelly, TJ
    Ma, KL
    [J]. VOLUME GRAPHICS 2001, 2001, : 51 - +
  • [38] Time-varying hierarchical chains of salps with random weight networks for feature selection
    Faris, Hossam
    Heidari, Ali Asghar
    Al-Zoubi, Ala' M.
    Mafarja, Majdi
    Aljarah, Ibrahim
    Eshtay, Mohammed
    Mirjalili, Seyedali
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140
  • [39] OPTIMIZATION OF TIME-VARYING SYSTEMS
    MCBRIDE, LE
    NARENDRA, KS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1965, AC10 (03) : 289 - &
  • [40] Time-varying Network Optimization
    Schoen, F.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 (02) : 293 - 294