SOME OSTROWSKI TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR h-CONVEX FUNCTIONS

被引:0
|
作者
Liu, Wenjun [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ostrowski type inequality; h-convex function; Riemann-Liouville fractional integral; MAPPINGS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions, which are super-multiplicative or super-additive, are given. These results not only generalize those of [24, 25], but also provide new estimates on these types of Ostrowski inequalities for fractional integrals.
引用
下载
收藏
页码:998 / 1004
页数:7
相关论文
共 50 条
  • [41] SOME OSTROWSKI TYPE INEQUALITIES FOR p-CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Thatsatian, Arisa
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (02): : 467 - 478
  • [42] Hermite-Hadamard-Fejer Type Inequalities for (k, h)-Convex Function via Riemann-Liouville and Conformable Fractional Integrals
    Set, Erhan
    Karaoglan, Ali
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [43] Bounds of Riemann-Liouville Fractional Integrals in General Form via Convex Functions and Their Applications
    Farid, Ghulam
    Nazeer, Waqas
    Saleem, Muhammad Shoaib
    Mehmood, Sajid
    Kang, Shin Min
    MATHEMATICS, 2018, 6 (11)
  • [44] Trapezoid type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation
    Dragomir, Silvestru Sever
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (01) : 30 - 53
  • [45] New Hermite-Hadamard Type Inequalities for ψ-Riemann-Liouville Fractional Integral via Convex Functions
    Sun, Yining
    Xu, Run
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [46] Generalized Riemann-Liouville k-Fractional Integrals Associated With Ostrowski Type Inequalities and Error Bounds of Hadamard Inequalities
    Kwun, Young Chel
    Farid, Ghulum
    Nazeer, Waqas
    Ullah, Sami
    Kang, Shin Min
    IEEE ACCESS, 2018, 6 : 64946 - 64953
  • [47] Simpson's type inequalities for η-convex functions via k-Riemann-Liouville fractional integrals
    Kermausuor, Seth
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (02): : 193 - 200
  • [48] Hermite-Hadamard Type Riemann-Liouville Fractional Integral Inequalities for Convex Functions
    Tomar, Muharrem
    Set, Erhan
    Sarikaya, M. Zeki
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [49] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234
  • [50] THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Kunt, Mehmet
    Karapinar, Dunya
    Turhan, Sercan
    Iscan, Imdat
    MATHEMATICA SLOVACA, 2019, 69 (04) : 773 - 784