Solid-Electrolyte Interphase of Molecular Crowding Electrolytes

被引:19
|
作者
Xie, Jing [1 ]
Guan, Yuepeng [2 ]
Huang, Yaqin [3 ]
Lu, Yi-Chun [1 ]
机构
[1] Chinese Univ Hong Kong, Electrochem Energy & Interfaces Lab, Dept Mech & Automat Engn, Hong Kong 999077, Peoples R China
[2] Beijing Inst Fash Technol, Beijing Engn Res Ctr Text Nano Fiber, Beijing Key Lab Clothing Mat R&D & Assessment, Beijing 100029, Peoples R China
[3] Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Key Lab Biomed Mat Nat Macromol, Minist Educ, Beijing 100029, Peoples R China
关键词
HIGH-PERFORMANCE; LITHIUM; BATTERIES; SPECTROSCOPY; LI4TI5O12; HALIDES;
D O I
10.1021/acs.chemmater.2c00722
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular crowding electrolytes extend the stability window of aqueous batteries with water-miscible/soluble polymers at a low concentration of lithium salts [2 m lithium bis(trifluoromethane sulfonyl)imide (LiTFSI)]. Water decomposition [especially hydrogen evolution reaction (HER)] is effectively suppressed, enabling the use of numerous negative electrodes which cannot work in traditional aqueous electrolytes. However, the mechanism underlying the cathodic stability of molecular crowding electrolytes is not yet fully understood. Here, we compare the HER suppression effect in molecular crowding electrolytes with LiTFSI and lithium perchlorate and correlate their distinct cathodic stability to the difference in the solid-electrolyte interphase (SEI). This work reveals the critical role of LiF in developing a stable SEI and suppressing the HER in molecular crowding electrolytes, providing a design path for safe, low-cost, and high-voltage aqueous batteries.
引用
收藏
页码:5176 / 5183
页数:8
相关论文
共 50 条
  • [31] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Lee, Seongsoo
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    Chemical Engineering Journal, 2021, 424
  • [32] Understanding the Nature of Solid-Electrolyte Interphase on Lithium Metal in Liquid Electrolytes: A Review on Growth, Properties, and Application-Related Challenges
    Nojabaee, Maryam
    Kopljar, Dennis
    Wagner, Norbert
    Friedrich, Kaspar Andreas
    BATTERIES & SUPERCAPS, 2021, 4 (06) : 909 - 922
  • [33] Preventing Electrolyte Decomposition on a Ca Metal Electrode Interface Using an Artificial Solid-Electrolyte Interphase
    Young, Joshua
    Smeu, Manuel
    ADVANCED THEORY AND SIMULATIONS, 2021, 4 (08)
  • [34] Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon
    Patra, Jagabandhu
    Huang, Hao-Tzu
    Xue, Weijiang
    Wang, Chao
    Helal, Ahmed S.
    Li, Ju
    Chang, Jeng-Kuei
    ENERGY STORAGE MATERIALS, 2019, 16 : 146 - 154
  • [35] Electrochemical Polishing of Lithium Metal Surface for Highly Demanding Solid-Electrolyte Interphase
    Gu, Yu
    Wang, Wei-Wei
    He, Jun-Wu
    Tang, Shuai
    Xu, Hong-Yu
    Yan, Jia-Wei
    Wu, Qi-Hui
    Lian, Xiao-Bing
    Zheng, Ming-Sen
    Dong, Quan-Feng
    Mao, Bing-Wei
    CHEMELECTROCHEM, 2019, 6 (01): : 181 - 188
  • [36] Unraveling the Solvent Effect on Solid-Electrolyte Interphase Formation for Sodium Metal Batteries
    Wang, Shiyang
    Weng, Suting
    Li, Xinpeng
    Liu, Yue
    Huang, Xiangling
    Jie, Yulin
    Pan, Yuxue
    Zhou, Hongmin
    Jiao, Shuhong
    Li, Qi
    Wang, Xuefeng
    Cheng, Tao
    Cao, Ruiguo
    Xu, Dongsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (50)
  • [37] The Electrochemical Mechanisms of Solid-Electrolyte Interphase Formation in Lithium-Based Batteries
    Gialampouki, Martha A.
    Hashemi, Javad
    Peterson, Andrew A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (33): : 20084 - 20092
  • [38] Deciphering the Lithium-Ion Conduction Mechanism of LiH in Solid-Electrolyte Interphase
    Sun, Jinran
    Yan, Jitong
    Li, Fan
    Li, Jiedong
    Ma, Jun
    Xu, Gaojie
    Han, Pengxian
    Hou, Guangjin
    Tang, Yongfu
    Dong, Shanmu
    Huang, Jianyu
    Cui, Guanglei
    ADVANCED MATERIALS, 2024, 36 (33)
  • [39] Lithium Diffusion Mechanism through Solid-Electrolyte Interphase in Rechargeable Lithium Batteries
    Ramasubramanian, Ajaykrishna
    Yurkiv, Vitaliy
    Foroozan, Tara
    Ragone, Marco
    Shahbazian-Yassar, Reza
    Mashayek, Farzad l
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (16): : 10237 - 10245
  • [40] Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries
    Li, Tao
    Zhang, Xue-Qiang
    Shi, Peng
    Zhang, Qiang
    JOULE, 2019, 3 (11) : 2647 - 2661