CRITICAL FUJITA EXPONENT FOR A FAST DIFFUSIVE EQUATION WITH VARIABLE COEFFICIENTS

被引:2
|
作者
Li, Zhongping [1 ]
Mu, Chunlai [2 ]
Du, Wanjuan [1 ]
机构
[1] China West Normal Univ, Coll Math & Informat, Nanchong 637009, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
关键词
critical Fujita exponent; fast diffusive equation; variable coefficients; DEGENERATE PARABOLIC EQUATION; LARGE TIME BEHAVIOR; BLOW-UP; FILTRATION EQUATION; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM; NONEXISTENCE; EXISTENCE;
D O I
10.4134/BKMS.2013.50.1.105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the positive solution to a Cauchy problem in R-N of the fast diffusive equation: vertical bar x vertical bar(m)u(t) = div(vertical bar del(u)vertical bar(p-2)del(u)) + vertical bar x vertical bar(n)(q)(u), with nontrivial, nonnegative initial data. Here 2N+m/N+m+1 < p < 2, q > 1 and 0 < m <= n < qm+N(q-1). We prove that q(c) = p-1+p+n/N+m is the critical Fujita exponent. That is, if 1 < q <= q(c), then every positive solution blows up in finite time, but for q > q(c), there exist both global and non-global solutions to the problem.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [31] Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients
    Yohei Fujishima
    Tatsuki Kawakami
    Yannick Sire
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [32] A note on the Fujita exponent in fractional heat equation involving the Hardy potential
    Abdellaoui, Boumediene
    Peral, Ireneo
    Primo, Ana
    MATHEMATICS IN ENGINEERING, 2020, 2 (04): : 639 - 656
  • [33] Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients
    Fujishima, Yohei
    Kawakami, Tatsuki
    Sire, Yannick
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (02)
  • [34] The Fujita exponent for a semilinear heat equation with forcing term on Heisenberg group
    Borikhanov, Meiirkhan B.
    Ruzhansky, Michael
    Torebek, Berikbol T.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3794 - 3810
  • [35] Asymptotic results and critical Fujita exponent in parabolic equations with nonlocal nonlinearity
    Li, Fengjie
    Liu, Jiaqi
    APPLICABLE ANALYSIS, 2022, 101 (18) : 6411 - 6434
  • [36] Fujita Type Conditions to Heat Equation with Variable Source
    Yun-xia LIU
    Yun-hua WANG
    Si-ning ZHENG
    ActaMathematicaeApplicataeSinica, 2017, 33 (01) : 63 - 68
  • [37] Fujita Type Conditions to Heat Equation with Variable Source
    Liu, Yun-xia
    Wang, Yun-hua
    Zheng, Si-ning
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (01): : 63 - 68
  • [38] Global solutions for the critical nonlinear wave equation in variable coefficients
    Ibrahim, S
    Majdoub, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2003, 131 (01): : 1 - 22
  • [39] CRITICAL FUJITA EXPONENT FOR THE DIFFUSION EQUATION IN TRANSPARENT MEDIA WITH SOURCE HAVING POWER-LIKE NON-LINEARITIES
    Mazon, J. M.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2013, 18 (3-4) : 243 - 264
  • [40] Fujita type conditions to heat equation with variable source
    Yun-xia Liu
    Yun-hua Wang
    Si-ning Zheng
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 63 - 68