Not all edges are peers: Accurate structure-aware graph pooling networks

被引:4
|
作者
Yu, Hualei
Yuan, Jinliang
Yao, Yirong
Wang, Chongjun [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural networks; Graph classification; Pooling operator;
D O I
10.1016/j.neunet.2022.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in graph-related tasks. For graph classification task, an elaborated pooling operator is vital for learning graph-level representations. Most pooling operators derived from existing GNNs generate a coarsen graph through ordering the nodes and selecting some top-ranked ones. However, these methods fail to explore the fundamental elements other than nodes in graphs, which may not efficiently utilize the structure information. Besides, all edges attached to the low-ranked nodes are discarded, which destroys graphs' connectivity and loses information. Moreover, the selected nodes tend to concentrate on some substructures while overlooking information in others. To address these challenges, we propose a novel pooling operator called Accurate Structure-Aware Graph Pooling (ASPool), which can be integrated into various GNNs to learn graph-level representation. Specifically, ASPool adaptively retains a subset of edges to calibrate the graph structure and learns the abstracted representations, wherein all the edges are viewed as non-peers instead of simply connecting nodes. To preserve the graph's connectivity, we further introduce the selection strategy considering both top-ranked nodes and dropped edges. Additionally, ASPool performs a two-stage calculation process to promise that the sampled nodes are distributed throughout the graph. Experiment results on 9 widely used benchmarks show that ASPool achieves superior performance over the state-of-the-art graph representation learning methods.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 50 条
  • [21] Topology-Aware Graph Pooling Networks
    Gao, Hongyang
    Liu, Yi
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4512 - 4518
  • [22] Structure-Aware Convolutional Neural Networks
    Chang, Jianlong
    Gu, Jie
    Wang, Lingfeng
    Meng, Gaofeng
    Xiang, Shiming
    Pan, Chunhong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [23] SA-GCN: structure-aware graph convolutional networks for crowd pose estimation
    Wang, Jia
    Luo, Yanmin
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (09): : 10046 - 10062
  • [24] SA-GCN: structure-aware graph convolutional networks for crowd pose estimation
    Jia Wang
    Yanmin Luo
    The Journal of Supercomputing, 2023, 79 : 10046 - 10062
  • [25] Subgraph Adaptive Structure-Aware Graph Contrastive Learning
    Chen, Zhikui
    Peng, Yin
    Yu, Shuo
    Cao, Chen
    Xia, Feng
    MATHEMATICS, 2022, 10 (17)
  • [26] Local structure-aware graph contrastive representation learning
    Yang, Kai
    Liu, Yuan
    Zhao, Zijuan
    Ding, Peijin
    Zhao, Wenqian
    NEURAL NETWORKS, 2024, 172
  • [27] Relation Structure-Aware Heterogeneous Graph Neural Network
    Zhu, Shichao
    Zhou, Chuan
    Pan, Shirui
    Zhu, Xingquan
    Wang, Bin
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1534 - 1539
  • [28] Multi-Graph Learning Based on Structure-Aware
    Fu, Dong-Lai
    Gao, Ze-An
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (07): : 2407 - 2417
  • [29] Structure-aware siamese graph neural networks for encounter-level patient similarity learning
    Gu, Yifan
    Yang, Xuebing
    Tian, Lei
    Yang, Hongyu
    Lv, Jicheng
    Yang, Chao
    Wang, Jinwei
    Xi, Jianing
    Kong, Guilan
    Zhang, Wensheng
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 127
  • [30] HGNN-QSSA: Heterogeneous Graph Neural Networks With Quantitative Sampling and Structure-Aware Attention
    Zhao, Qin
    Miao, Yaru
    An, Dongdong
    Lian, Jie
    Li, Maozhen
    IEEE ACCESS, 2024, 12 : 25512 - 25524