The u, u(-1) Lemma revisited

被引:5
|
作者
Anderson, DD [1 ]
Kwak, DJ [1 ]
机构
[1] KYUNGPOOK NATL UNIV,DEPT MATH,TAEGU,SOUTH KOREA
关键词
D O I
10.1080/00927879608825708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an integral domain with quotient field K. The u, u(-1) Lemma states that if R is integrally closed and quasilocal and if u is an element of K is the root of a polynomial f is an element of R[X] with some coefficient a unit, then u, or u(-1) is an element of R. A globalization states that for R integrally closed, if u = a/b is the root of f is an element of R [X] with A(f) invertible, then (a, b) is invertible. We prove the converse of both results and show that for R integrally closed, the following are equivalent: (1) R is Prufer, (2) every u is an element of K is the root of a quadratic polynomial f is an element of R[X] with some coefficient a unit, and (3) every u is an element of K is the root of a polynomial f is an element of R[X] with A(f) invertible. Moreover, for any integral domain R, the integral closure (R) over bar is Prufer if and only if (3) holds.
引用
收藏
页码:2447 / 2454
页数:8
相关论文
共 50 条
  • [21] [END U] = [CON U] = [SUB U] = 2[U] FOR ANY UNCOUNTABLE 1-UNARY ALGEBRA U
    KOPECEK, O
    ALGEBRA UNIVERSALIS, 1983, 16 (03) : 312 - 317
  • [22] Light dark matter showering under broken dark U(1) revisited
    Chen, Junmou
    Ko, Pyungwon
    Li, Hsiang-nan
    Li, Jinmian
    Yokoya, Hiroshi
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [23] Light dark matter showering under broken dark U(1) — revisited
    Junmou Chen
    Pyungwon Ko
    Hsiang-nan Li
    Jinmian Li
    Hiroshi Yokoya
    Journal of High Energy Physics, 2019
  • [24] The local Langlands correspondence in families and Ihara's lemma for U(n)
    Sorensen, Claus M.
    JOURNAL OF NUMBER THEORY, 2016, 164 : 127 - 165
  • [25] JACOBSON LEMMA REVISITED
    KAPLANSKY, I
    JOURNAL OF ALGEBRA, 1980, 62 (02) : 473 - 476
  • [26] The Farkas Lemma revisited
    S. S. Kutateladze
    Siberian Mathematical Journal, 2010, 51 : 78 - 87
  • [27] Frostman lemma revisited
    Dobronravov, Nikita
    ANNALES FENNICI MATHEMATICI, 2024, 49 (01): : 303 - 318
  • [28] Observations on a U(1) x U(1) vector theory
    McKeon, DGC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (16): : 2211 - 2217
  • [29] The Farkas Lemma revisited
    Kutateladze, S. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (01) : 78 - 87
  • [30] SU(2)U(1)U′(1)规范模型
    顾鸣皋
    李新洲
    殷鹏程
    自然杂志, 1978, (05) : 274 - 276