Let R be an integral domain with quotient field K. The u, u(-1) Lemma states that if R is integrally closed and quasilocal and if u is an element of K is the root of a polynomial f is an element of R[X] with some coefficient a unit, then u, or u(-1) is an element of R. A globalization states that for R integrally closed, if u = a/b is the root of f is an element of R [X] with A(f) invertible, then (a, b) is invertible. We prove the converse of both results and show that for R integrally closed, the following are equivalent: (1) R is Prufer, (2) every u is an element of K is the root of a quadratic polynomial f is an element of R[X] with some coefficient a unit, and (3) every u is an element of K is the root of a polynomial f is an element of R[X] with A(f) invertible. Moreover, for any integral domain R, the integral closure (R) over bar is Prufer if and only if (3) holds.
机构:
Korea Inst Adv Study, Sch Phys, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South KoreaKorea Inst Adv Study, Sch Phys, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South Korea
Chen, Junmou
Ko, Pyungwon
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Sch Phys, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South Korea
Korea Inst Adv Study, Quantum Universe Ctr, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South KoreaKorea Inst Adv Study, Sch Phys, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South Korea
Ko, Pyungwon
Li, Hsiang-nan
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Phys, Taipei 115, TaiwanKorea Inst Adv Study, Sch Phys, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South Korea
Li, Hsiang-nan
Li, Jinmian
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610065, Sichuan, Peoples R ChinaKorea Inst Adv Study, Sch Phys, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South Korea
Li, Jinmian
Yokoya, Hiroshi
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Quantum Universe Ctr, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South KoreaKorea Inst Adv Study, Sch Phys, 85 Hoegiro Dongdaemu Gu, Seoul 02455, South Korea
机构:
St Petersburg State Univ, Dept Leonhard Euler Int Math Inst, St Petersburg 197022, RussiaSt Petersburg State Univ, Dept Leonhard Euler Int Math Inst, St Petersburg 197022, Russia