A machine learning efficient frontier

被引:5
|
作者
Clark, Brian [1 ]
Feinstein, Zachary [2 ]
Simaan, Majeed [2 ]
机构
[1] Rensselaer Polytech Inst, Lally Sch Management, 110 8th St,Pittsburgh Bldg, Troy, NY 12180 USA
[2] Stevens Inst Technol, Sch Business, Babbio Ctr, 1 Castle Point Terrace, Hoboken, NJ 07030 USA
关键词
Portfolio theory; Machine learning; Tactical asset allocation; Estimation risk; PORTFOLIO; REGULARIZATION; VOLATILITY; SELECTION;
D O I
10.1016/j.orl.2020.07.016
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a simple approach to bridge between portfolio theory and machine learning. The outcome is an out-of-sample machine learning efficient frontier based on two assets, high risk and low risk. By rotating between the two assets, we show that the proposed frontier dominates the mean-variance efficient frontier out-of-sample. Our results, therefore, shed important light on the appeal of machine learning into portfolio selection under estimation risk. (C) 2020 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:630 / 634
页数:5
相关论文
共 50 条
  • [31] Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology
    Yan, Jun
    Wang, Xiangfeng
    PLANT JOURNAL, 2022, 111 (06): : 1527 - 1538
  • [32] Communication Efficient Framework for Decentralized Machine Learning
    Elgabli, Anis
    Park, Jihong
    Bedi, Amrit S.
    Bennis, Mehdi
    Aggarwal, Vaneet
    2020 54TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2020, : 47 - 51
  • [33] An Efficient Extreme Learning Machine for Robust Regression
    Li, Decai
    He, Yuqing
    ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 289 - 299
  • [34] Efficient Machine Learning for Big Data: A Review
    Al-Jarrah, Omar Y.
    Yoo, Paul D.
    Muhaidat, Sami
    Karagiannidis, George K.
    Taha, Kamal
    BIG DATA RESEARCH, 2015, 2 (03) : 87 - 93
  • [35] Energy-Efficient Machine Learning on the Edges
    Kumar, Mohit
    Zhang, Xingzhou
    Liu, Liangkai
    Wang, Yifan
    Shi, Weisong
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2020), 2020, : 912 - 921
  • [36] A Simple and Efficient Tensor Calculus for Machine Learning
    Laue, Soeren
    Mitterreiter, Matthias
    Giesen, Joachim
    FUNDAMENTA INFORMATICAE, 2020, 177 (02) : 157 - 179
  • [37] Adaptive machine learning for efficient materials design
    Balachandran, Prasanna V.
    MRS BULLETIN, 2020, 45 (07) : 579 - 586
  • [38] An Efficient Machine Learning Approach for Atmospheric Correction
    Rusia, Prankur
    Bhateja, Yatharath
    Misra, Indranil
    Moorthi, S. Manthira
    Dhar, Debajyoti
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (10) : 2539 - 2548
  • [39] Fast training and efficient linear learning machine
    Bounsiar, Abdenour
    Beauseroy, Pierre
    Grall, Edith
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5635 - 5638
  • [40] A Machine Learning Approach for Efficient Traffic Classification
    Li, Wei
    Moore, Andrew W.
    PROCEEDINGS OF MASCOTS '07: 15TH INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS, AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS, 2007, : 310 - 317