Using machine learning to generate headlines

被引:0
|
作者
Wang, RC [1 ]
Stokes, N [1 ]
Doran, W [1 ]
Dunnion, J [1 ]
Carthy, J [1 ]
机构
[1] Univ Coll Dublin, Dept Comparat Biosci, Intelligent Informat Retrieval Grp, Dublin 2, Ireland
关键词
machine learning; headline generation; statistical techniques; DUC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a system which generates headlines for a text. Our system, the HybridTrim system, uses a linguistic, statistical and positional information in combination with a machine learning technique to identify topic labels for headlines in a text. In this paper, we compare our system with the Topiary system which, in contrast, uses a statistical learning approach to finding topic descriptors for headlines. Both systems combine these topic descriptors with a compressed version of the lead sentence. The performance of these systems is evaluated using the ROUGE evaluation suite on the DUC 2004 news stories collection.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 50 条
  • [31] Leveraging machine learning to generate a unified and complete building height dataset for Germany
    Dabrock, Kristina
    Pflugradt, Noah
    Weinand, Jann Michael
    Stolten, Detlef
    ENERGY AND AI, 2024, 17
  • [32] What kind of novelties can machine learning possibly generate? The case of genomics
    Ratti, Emanuele
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2020, 83 : 86 - 96
  • [33] REPLY: Leveraging Machine Learning to Generate Prediction Models for Structural Valve Interventions
    Hernandez-Suarez, Dagmar F.
    Villablanca, Pedro A.
    Kim, Yeunjung
    Wiley, Jose
    Sanina, Cristina
    Roche-Lima, Abiel
    JACC-CARDIOVASCULAR INTERVENTIONS, 2019, 12 (20) : 2113 - 2114
  • [34] Investigating the use of machine learning to generate ventilation images from CT scans
    Grover, James
    Byrne, Hilary L.
    Sun, Yu
    Kipritidis, John
    Keall, Paul
    MEDICAL PHYSICS, 2022, 49 (08) : 5258 - 5267
  • [35] Using Modification to Generate Emergent Performance (and Learning?) in Sports
    Farrow, D.
    Buszard, T.
    Reid, M.
    Masters, R.
    RESEARCH QUARTERLY FOR EXERCISE AND SPORT, 2016, 87 : S21 - S22
  • [36] Machine-learning-based methods to generate conformational ensembles of disordered proteins
    Taneja, Ishan
    Lasker, Keren
    BIOPHYSICAL JOURNAL, 2024, 123 (01) : 101 - 113
  • [37] Robustness of machine learning algorithms to generate flood susceptibility maps for watersheds in Jordan
    Al-Sheriadeh, Mohanned S.
    Daqdouq, Mohammad A.
    GEOMATICS NATURAL HAZARDS & RISK, 2024, 15 (01)
  • [38] Using deep learning to generate design spaces for architecture
    Sebestyen, Adam
    Hirschberg, Urs
    Rasoulzadeh, Shervin
    INTERNATIONAL JOURNAL OF ARCHITECTURAL COMPUTING, 2023, 21 (02) : 337 - 357
  • [39] Using Deep Learning to Generate Complete Log Statements
    Mastropaolo, Antonio
    Pascarella, Luca
    Bavota, Gabriele
    Proceedings - International Conference on Software Engineering, 2022, 2022-May : 2279 - 2290
  • [40] Using Deep Learning to Generate Complete Log Statements
    Mastropaolo, Antonio
    Pascarella, Luca
    Bavota, Gabriele
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 2279 - 2290