Multi-Feature Semi-Supervised Learning for COVID-19 Diagnosis from Chest X-Ray Images

被引:4
|
作者
Qi, Xiao [1 ]
Foran, David J. [4 ]
Nosher, John L. [2 ]
Hacihaliloglu, Ilker [2 ,3 ]
机构
[1] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ USA
[2] Rutgers Robert Wood Johnson Med Sch, Dept Radiol, New Brunswick, NJ 08901 USA
[3] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[4] Rutgers Canc Inst New Jersey, New Brunswick, NJ USA
关键词
Semi-supervised learning; Classification; COVID-19; Chest X-ray;
D O I
10.1007/978-3-030-87589-3_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computed tomography (CT) and chest X-ray (CXR) have been the two dominant imaging modalities deployed for improved management of Coronavirus disease 2019 (COVID-19). Due to faster imaging, less radiation exposure, and being cost-effective CXR is preferred over CT. However, the interpretation of CXR images, compared to CT, is more challenging due to low image resolution and COVID-19 image features being similar to regular pneumonia. Computer-aided diagnosis via deep learning has been investigated to help mitigate these problems and help clinicians during the decision-making process. The requirement for a large amount of labeled data is one of the major problems of deep learning methods when deployed in the medical domain. To provide a solution to this, in this work, we propose a semi-supervised learning (SSL) approach using minimal data for training. We integrate localphase CXR image features into a multi-feature convolutional neural network architecture where the training of SSL method is obtained with a teacher/student paradigm. Quantitative evaluation is performed on 8,851 normal (healthy), 6,045 pneumonia, and 3,795 COVID-19 CXR scans. By only using 7.06% labeled and 16.48% unlabeled data for training, 5.53% for validation, our method achieves 93.61% mean accuracy on a large-scale (70.93%) test data. We provide comparison results against fully supervised and SSL methods. The code and dataset will be made available after acceptance.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [21] Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images
    Türk F.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1357 - 1373
  • [22] AutoCovNet: Unsupervised feature learning using autoencoder and feature merging for detection of COVID-19 from chest X-ray images
    Rashid, Nayeeb
    Hossain, Md Adnan Faisal
    Ali, Mohammad
    Sukanya, Mumtahina Islam
    Mahmud, Tanvir
    Fattah, Shaikh Anowarul
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (04) : 1685 - 1701
  • [23] A semi-supervised learning approach for COVID-19 detection from chest CT scans
    Zhang, Yong
    Su, Li
    Liu, Zhenxing
    Tan, Wei
    Jiang, Yinuo
    Cheng, Cheng
    NEUROCOMPUTING, 2022, 503 : 314 - 324
  • [24] Deep learning based detection of COVID-19 from chest X-ray images
    Sarra Guefrechi
    Marwa Ben Jabra
    Adel Ammar
    Anis Koubaa
    Habib Hamam
    Multimedia Tools and Applications, 2021, 80 : 31803 - 31820
  • [25] Deep learning based detection of COVID-19 from chest X-ray images
    Guefrechi, Sarra
    Ben Jabra, Marwa
    Ammar, Adel
    Koubaa, Anis
    Hamam, Habib
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31803 - 31820
  • [26] COVID-19 detection from chest X-ray images using transfer learning
    El Houby, Enas M. F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Detection of COVID-19 from chest x-ray images using transfer learning
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)
  • [28] Multi-Channel Transfer Learning of Chest X-ray Images for Screening of COVID-19
    Misra, Sampa
    Jeon, Seungwan
    Lee, Seiyon
    Managuli, Ravi
    Jang, In-Su
    Kim, Chulhong
    ELECTRONICS, 2020, 9 (09) : 1 - 12
  • [29] Joint Diagnosis of Pneumonia, COVID-19, and Tuberculosis from Chest X-ray Images: A Deep Learning Approach
    Ahmed, Mohammed Salih
    Rahman, Atta
    AlGhamdi, Faris
    AlDakheel, Saleh
    Hakami, Hammam
    AlJumah, Ali
    AlIbrahim, Zuhair
    Youldash, Mustafa
    Alam Khan, Mohammad Aftab
    Basheer Ahmed, Mohammed Imran
    DIAGNOSTICS, 2023, 13 (15)
  • [30] Ensemble learning-based COVID-19 detection by feature boosting in chest X-ray images
    Upadhyay, Kamini
    Agrawal, Monika
    Deepak, Desh
    IET IMAGE PROCESSING, 2020, 14 (16) : 4059 - 4066