Hyperspectral Anomaly Detection Using the Spectral-Spatial Graph

被引:28
|
作者
Tu, Bing [1 ]
Wang, Zhi [1 ]
Ouyang, Huiting [1 ]
Yang, Xianchang [1 ]
Li, Jun [2 ]
Plaza, Antonio [3 ]
机构
[1] Hunan Inst Sci & Technol, Sch Informat Sci & Technol, Yueyang 414000, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430078, Peoples R China
[3] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Index Terms-Anomaly detection; correlation graph; graph Fourier transform (GFT); graph theory; hyperspectral image (HSI); REPRESENTATION;
D O I
10.1109/TGRS.2022.3217329
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Anomaly detection is an important technique for hyperspectral image (HSI) processing. It aims to find pixels that are markedly different from the background when the target spectrum is unavailable. Many anomaly detection methods have been proposed over the past years, among which graph-based ones have attracted extensive attention. And they usually just consider the spectral information to build the adjacency matrix of the graph, which does not think over the effect of spatial information in this process. This article proposes a new anomaly detection method using the spectral-spatial graph (SSG) that considers both spatial and spectral information. Thus, the spatial adjacency matrix and spectral adjacency matrix are constructed from the spatial and spectral dimensions, respectively. To obtain an SSG with more discriminant characteristics, two different local neighborhood detection strategies are used to measure the similarity of the SSG. Furthermore, global anomaly detection results on HSIs were obtained by the graph Laplacian anomaly detection method, and the global and local anomaly detection results were optimized by the differential fusion method. Compared with other anomaly detection algorithms on several synthetic and real datasets, the proposed algorithm shows superior detection performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Spectral-spatial dynamic graph convolutional network for hyperspectral image classification
    Chen, Rong
    Li, Guanghui
    Dai, Chenglong
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3679 - 3695
  • [22] Weighted Sparse Graph Regularization for Spectral-Spatial Classification of Hyperspectral Images
    Xue, Zhaohui
    Yang, Sirui
    Zhang, Ling
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (09) : 1630 - 1634
  • [23] Spectral-Spatial Graph Attention Network for Semisupervised Hyperspectral Image Classification
    Zhao, Zhengang
    Wang, Hao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Embedding Learning on Spectral-Spatial Graph for Semisupervised Hyperspectral Image Classification
    Cao, Jiayan
    Wang, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) : 1805 - 1809
  • [25] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [26] Spectral-spatial dynamic graph convolutional network for hyperspectral image classification
    Rong Chen
    Guanghui Li
    Chenglong Dai
    Earth Science Informatics, 2023, 16 : 3679 - 3695
  • [27] Spectral-Spatial Classification Using Tensor Modeling for Cancer Detection with Hyperspectral Imaging
    Lu, Guolan
    Halig, Luma
    Wang, Dongsheng
    Chen, Zhuo Georgia
    Fei, Baowei
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [28] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
    Zhang, Minghua
    Luo, Hongling
    Song, Wei
    Mei, Haibin
    Su, Cheng
    REMOTE SENSING, 2021, 13 (21)
  • [30] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    NEUROCOMPUTING, 2019, 328 : 39 - 47