COMPUTATIONALLY EFFICIENT DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES

被引:3
|
作者
Brust, Johannes J. [1 ]
Marcia, Roummel F. [2 ]
Petra, Cosmin G. [3 ]
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Calif, Dept Appl Math, Merced, CA 95343 USA
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
oblique projection matrices; eigendecomposition; singular value decomposition; SVD; randomized singular value decomposition; projections; SCALED PROJECTIONS; ALGORITHMS;
D O I
10.1137/19M1288115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Oblique projection matrices arise in problems in weighted least squares, signal processing, and optimization. While these matrices can be potentially very large, their low-rank structure can be exploited for efficient computation. We propose fast and scalable algorithms for computing their eigendecomposition and singular value decomposition (SVD). Numerical experiments that compare our proposed approaches to existing methods, including randomized SVD, are presented. In addition, we test their accuracy on linear systems from equality constrained optimization problems.
引用
收藏
页码:852 / 870
页数:19
相关论文
共 50 条
  • [1] Computationally efficient maximum likelihood estimation of structured covariance matrices
    Li, HB
    Stoica, P
    Li, J
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) : 1314 - 1323
  • [2] Matrix Reordering for Noisy Disordered Matrices: Optimality and Computationally Efficient Algorithms
    Cai, T. Tony
    Ma, Rong
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (01) : 509 - 531
  • [3] Computationally efficient Maximum-Likelihood estimation of structured covariance matrices
    Li, HB
    Stoica, P
    Li, J
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2325 - 2328
  • [4] COMPUTATIONALLY EFFICIENT REDUCED POLYNOMIAL BASED ALGORITHMS FOR HERMITIAN TOEPLITZ MATRICES
    KRISHNA, B
    KRISHNA, H
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (04) : 1275 - 1282
  • [5] ACCURATE AND EFFICIENT LDU DECOMPOSITIONS OF DIAGONALLY DOMINANT M-MATRICES
    Barreras, A.
    Pena, J. M.
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 24 : 152 - 167
  • [6] DECOMPOSITIONS OF MODULES AND MATRICES
    SHORES, TS
    WIEGAND, R
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (06): : 1277 - 1280
  • [7] CONVERGENT DECOMPOSITIONS OF MATRICES
    ALEFELD, G
    [J]. NUMERISCHE MATHEMATIK, 1973, 20 (04) : 312 - 316
  • [8] On smooth decompositions of matrices
    Dieci, L
    Eirola, T
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) : 800 - 819
  • [9] Computationally efficient version of the affine projection algorithm for multichannel active noise control
    Ferrer, M
    González, A
    de Diego, M
    Piñero, G
    [J]. 2004 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2004, : 561 - 565
  • [10] OBLIQUE HAMMER PROJECTION
    PECSI, A
    [J]. PROFESSIONAL GEOGRAPHER, 1966, 18 (04): : 235 - 235