MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning

被引:0
|
作者
Malysheva, Aleksandra [1 ]
Kudenko, Daniel [2 ]
Shpilman, Aleksei [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, JetBrains Res, St Petersburg, Russia
[2] Leibniz Univ Hannover, JetBrains Res, Res Ctr L3S, Hannover, Germany
来源
2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY) | 2019年
关键词
multi-agent system; relevance graphs; deep-learning;
D O I
10.1109/redundancy48165.2019.9003345
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over recent years, deep reinforcement learning has shown strong successes in complex single-agent tasks, and more recently this approach has also been applied to multi-agent domains. In this paper, we propose a novel approach, called MAGNet, to multi-agent reinforcement learning that utilizes a relevance graph representation of the environment obtained by a self-attention mechanism, and a message-generation technique. We applied our MAGnet approach to the synthetic predator-prey multi-agent environment and the Pommerman game and the results show that it significantly outperforms state-of-the-art MARL solutions, including Multi-agent Deep Q-Networks (MADQN), Multi-agent Deep Deterministic Policy Gradient (MADDPG), and QMIX.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [41] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635
  • [42] Partitioning in multi-agent reinforcement learning
    Sun, R
    Peterson, T
    FROM ANIMALS TO ANIMATS 6, 2000, : 325 - 332
  • [43] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +
  • [44] Multi-Agent Deep Reinforcement Learning for Multi-Object Tracker
    Jiang, Mingxin
    Hai, Tao
    Pan, Zhigeng
    Wang, Haiyan
    Jia, Yinjie
    Deng, Chao
    IEEE ACCESS, 2019, 7 : 32400 - 32407
  • [45] Packet Routing with Graph Attention Multi-Agent Reinforcement Learning
    Mai, Xuan
    Fu, Quanzhi
    Chen, Yi
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [46] A Soft Graph Attention Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Pu, Zhiqiang
    Liu, Zhen
    Yi, Jianqiang
    Qiu, Tenghai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2020, : 1257 - 1262
  • [47] Safe Multi-Agent Deep Reinforcement Learning for Dynamic Virtual Network Allocation
    Suzuki, Akito
    Harada, Shigeaki
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [48] Network slicing for vehicular communications: a multi-agent deep reinforcement learning approach
    Zoubeir Mlika
    Soumaya Cherkaoui
    Annals of Telecommunications, 2021, 76 : 665 - 683
  • [49] Network slicing for vehicular communications: a multi-agent deep reinforcement learning approach
    Mlika, Zoubeir
    Cherkaoui, Soumaya
    ANNALS OF TELECOMMUNICATIONS, 2021, 76 (9-10) : 665 - 683
  • [50] Multi-agent deep reinforcement learning for computation offloading in cooperative edge network
    Wu, Pengju
    Guan, Yepeng
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 567 - 591