BRWM: A relevance feedback mechanism for web page clustering

被引:0
|
作者
Anagnostopoulos, Ioannis [1 ]
Anagnostopoulos, Christos [2 ]
Vergados, Dimitrios D.
Maglogiannis, Ilias
机构
[1] Univ Aegean, Dept Informat & Commun Syst Engn, Samos 83200, Greece
[2] Univ Aegean, Dept Cultural Technol & Commun, Lesvos 81100, Greece
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an information system, which classifies web pages in specific categories according to a proposed relevance feedback mechanism. The proposed relevance feedback mechanism is called Balanced Relevance Weighting Mechanism - BRWM and uses the proportion of the already relevant categorized information amount for feature classification. Experimental measurements over an e-commerce framework, which describes the fundamental phases of web commercial transactions verified the robustness of using the mechanism on real data. Except from revealing the accomplished sequences in a web commerce transaction, the system can be used as an assistant and consultation tool for classification purposes. In addition, BRWM was compared with a similar relevance feedback mechanism from the literature over the established corpus of Reuters-21578 text categorization test collection, presenting promising results.
引用
收藏
页码:44 / +
页数:3
相关论文
共 50 条
  • [41] Web Page Clustering via Partition Adaptive Affinity Propagation
    Sun, Changyin
    Wang, Yifan
    Zhao, Haina
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 2, PROCEEDINGS, 2009, 5552 : 727 - 736
  • [42] Fast multi-word clustering algorithm of Web page
    Li, Zhenxing
    Xu, Zeping
    Tang, Weiqing
    Tang, Rongxi
    Jisuanji Gongcheng/Computer Engineering, 2003, 29 (02):
  • [43] Web Page Recommendation Algorithm based on Weighted MFP Clustering
    Xiong Haijun
    Huang Zhiqiang
    ICCSE 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2008, : 1251 - 1253
  • [44] A Clustering Based Scalable Hybrid Approach for Web Page Recommendation
    Sharif, Mohammad Amir
    Raghavan, Vijay V.
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,
  • [45] RELEVANCE OF THE TUBULOGLOMERULAR FEEDBACK MECHANISM IN PATHOPHYSIOLOGY
    BRAAM, B
    MITCHELL, KD
    KOOMANS, HA
    NAVAR, LG
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 1993, 4 (06): : 1257 - 1274
  • [46] Multiobjective evolutionary clustering of Web user sessions: a case study in Web page recommendation
    G. Nildem Demir
    A. Şima Uyar
    Şule Gündüz-Öğüdücü
    Soft Computing, 2010, 14 : 579 - 597
  • [47] Multiobjective evolutionary clustering of Web user sessions: a case study in Web page recommendation
    Demir, G. Nildem
    Uyar, A. Sima
    Gunduz-Oguducu, Sule
    SOFT COMPUTING, 2010, 14 (06) : 579 - 597
  • [48] A Dynamic Rearrangement Mechanism of Web Page Layouts Using Web Agents
    Nakamura, Masato
    Asami, Shohei
    Ozono, Tadachika
    Shintani, Toramatsu
    NEXT-GENERATION APPLIED INTELLIGENCE, PROCEEDINGS, 2009, 5579 : 634 - 643
  • [49] Image retrieval by fuzzy clustering of relevance feedback records
    Zhou, XD
    Zhang, Q
    Lin, L
    Deng, AL
    Wu, G
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 305 - 308
  • [50] A relevance feedback algorithm based on the clustering and Parzen window
    Koo, HI
    Cho, NI
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 551 - 554