3′ Cap-Independent Translation Enhancers of Plant Viruses

被引:151
|
作者
Simon, Anne E. [1 ]
Miller, W. Allen [2 ]
机构
[1] Univ Maryland, Dept Mol Genet & Cell Biol, College Pk, MD 20742 USA
[2] Iowa State Univ, Dept Plant Pathol & Microbiol, Ames, IA 50011 USA
来源
ANNUAL REVIEW OF MICROBIOLOGY, VOL 67 | 2013年 / 67卷
基金
美国国家科学基金会;
关键词
noncanonical translation; eIF4E/eIF4G; 3 ' UTR translation elements; RNA structure and function; internal ribosome-binding structures; long-distance RNA-RNA interactions; INTERNAL RIBOSOMAL ENTRY; TURNIP CRINKLE VIRUS; SATELLITE TOBACCO; INITIATION-FACTOR; 3'-UNTRANSLATED REGION; MESSENGER-RNA; MOSAIC-VIRUS; STIMULATES TRANSLATION; UNTRANSLATED REGIONS; RECESSIVE RESISTANCE;
D O I
10.1146/annurev-micro-092412-155609
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In the absence of a 5 ' cap, plant positive-strand RNA viruses have evolved a number of different elements in their 3 ' untranslated region (UTR) to attract initiation factors and/or ribosomes to their templates. These 3 ' cap-independent translational enhancers (3 ' CITEs) take different forms, such as I-shaped, Y-shaped, T-shaped, or pseudoknotted structures, or radiate multiple helices from a central hub. Common features of most 3 ' CITEs include the ability to bind a component of the translation initiation factor eIF4F complex and to engage in an RNA-RNA kissing-loop interaction with a hairpin loop located at the 5 ' end of the RNA. The two T-shaped structures can bind to ribosomes and ribosomal subunits, with one structure also able to engage in a simultaneous long-distance RNA-RNA interaction. Several of these 3 ' CITEs are interchangeable and there is evidence that natural recombination allows exchange of modular CITE units, which may overcome genetic resistance or extend the virus's host range.
引用
收藏
页码:21 / 42
页数:22
相关论文
共 50 条
  • [21] Crystal structure of a cap-independent translation enhancer RNA
    Lewicka, Anna
    Roman, Christina
    Jones, Stacey
    Disare, Michael
    Rice, Phoebe A.
    Piccirilli, Joseph A.
    NUCLEIC ACIDS RESEARCH, 2023, 51 (16) : 8891 - 8907
  • [22] New structural insights into cap-independent translation initiation
    Brilot, Axel
    Koh, Cha San
    Grigorieff, Nikolaus
    Korostelev, Andrei
    FASEB JOURNAL, 2014, 28 (01):
  • [23] Cap-independent translation of maize Hsp101
    Dinkova, TD
    Zepeda, H
    Martínez-Salas, E
    Martínez, LM
    Nieto-Sotelo, J
    de Jiménez, ES
    PLANT JOURNAL, 2005, 41 (05): : 722 - 731
  • [24] Cap-independent translation of heat shock messenger RNAs
    Rhoads, RE
    Lamphear, BJ
    CAP-INDEPENDENT TRANSLATION, 1995, 203 : 131 - 153
  • [25] Cap-independent leaky scanning as the mechanism of translation initiation of a plant viral genomic RNA
    SimonBuela, L
    Guo, HS
    Garcia, JA
    JOURNAL OF GENERAL VIROLOGY, 1997, 78 : 2691 - 2699
  • [26] Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules
    Iizuka, N
    Chen, C
    Yang, Q
    Johannes, G
    Sarnow, P
    CAP-INDEPENDENT TRANSLATION, 1995, 203 : 155 - 177
  • [27] Role of cap-independent translation in S. cerevisiae cytokinesis
    Onishi, M.
    Klass, D. M.
    Brown, P. O.
    Pringle, J. R.
    MOLECULAR BIOLOGY OF THE CELL, 2013, 24
  • [28] Mechanism of pathogen-induced cap-independent translation in plants
    Zlotorynski, Eytan
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (10) : 641 - 641
  • [29] trans regulation of cap-independent translation by a viral subgenomic RNA
    Shen, Ruizhong
    Rakotondrafara, Aurelie M.
    Miller, W. Allen
    JOURNAL OF VIROLOGY, 2006, 80 (20) : 10045 - 10054
  • [30] Mechanism of pathogen-induced cap-independent translation in plants
    Eytan Zlotorynski
    Nature Reviews Molecular Cell Biology, 2022, 23 : 641 - 641