Multiple noninteractive zero knowledge proofs under general assumptions

被引:191
|
作者
Feige, U [1 ]
Lapidot, D [1 ]
Shamir, A [1 ]
机构
[1] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
Hamiltonian cycle; witness indistinguishability;
D O I
10.1137/S0097539792230010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we show how to construct noninteractive zero knowledge proofs for any NP statement under general (rather than number theoretic) assumptions, and how to enable polynomially many provers to give polynomially many such proofs based on a single random string. Our constructions can be used in cryptographic applications in which the prover is restricted to polynomial time.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [41] On the concurrent composition of zero-knowledge proofs
    Richardson, R
    Kilian, J
    ADVANCES IN CRYPTOLOGY - EUROCRYPT'99, 1999, 1592 : 415 - 431
  • [42] Experimental relativistic zero-knowledge proofs
    Alikhani, Pouriya
    Brunner, Nicolas
    Crepeau, Claude
    Designolle, Sebastien
    Houlmann, Raphael
    Shi, Weixu
    Yang, Nan
    Zbinden, Hugo
    NATURE, 2021, 599 (7883) : 47 - +
  • [43] ON THE CONCRETE COMPLEXITY OF ZERO-KNOWLEDGE PROOFS
    BOYAR, J
    PERALTA, R
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 435 : 507 - 525
  • [44] MINIMUM RESOURCE ZERO-KNOWLEDGE PROOFS
    KILIAN, J
    MICALI, S
    OSTROVSKY, R
    30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, : 474 - 479
  • [45] Challenging epistemology: Interactive proofs and zero knowledge
    Bledin, Justin
    Journal of Applied Logic, 2008, 6 (04) : 490 - 501
  • [46] Experimental relativistic zero-knowledge proofs
    Pouriya Alikhani
    Nicolas Brunner
    Claude Crépeau
    Sébastien Designolle
    Raphaël Houlmann
    Weixu Shi
    Nan Yang
    Hugo Zbinden
    Nature, 2021, 599 : 47 - 50
  • [47] Zero-knowledge sets with short proofs
    Catalano, Dario
    Fiore, Dario
    Messina, Mariagrazia
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2008, 2008, 4965 : 433 - +
  • [48] ZERO-KNOWLEDGE PROOFS OF COMPUTATIONAL POWER
    YUNG, M
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 434 : 196 - 207
  • [49] MINIMUM RESOURCE ZERO-KNOWLEDGE PROOFS
    KILIAN, J
    MICALI, S
    OSTROVSKY, R
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 435 : 545 - 557
  • [50] A survey on zero knowledge range proofs and applications
    Eduardo Morais
    Tommy Koens
    Cees van Wijk
    Aleksei Koren
    SN Applied Sciences, 2019, 1