Understanding helium transport: experimental and theoretical investigations of low-Z impurity transport at ASDEX Upgrade

被引:22
|
作者
Kappatou, A. [1 ]
McDermott, R. M. [1 ]
Angioni, C. [1 ]
Manas, P. [1 ]
Puetterich, T. [1 ]
Dux, R. [1 ]
Viezzer, E. [2 ]
Jaspers, R. J. E. [3 ]
Fischer, R. [1 ]
Dunne, M. G. [1 ]
Cavedon, M. [1 ]
Willensdorfer, M. [1 ]
Tardini, G. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] Univ Seville, Dept Atom Mol & Nucl Phys, E-41012 Seville, Spain
[3] Tech Univ Eindhoven, Sci & Technol Nucl Fus, NL-5612 AZ Eindhoven, Netherlands
关键词
low-Z impurity transport; turbulent transport; gyrokinetic modelling; helium transport; REFLECTOMETRY; PARTICLE;
D O I
10.1088/1741-4326/ab013a
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The presence of helium is fundamentally connected to the performance of a fusion reactor, as fusion-produced helium is expected to heat the plasma bulk, while He 'ash' accumulation dilutes the fusion fuel. An understanding of helium transport via experimentally validated theoretical models of the low-Z impurity turbulent transport is indispensable to predict the helium density profile in future fusion devices. At ASDEX Upgrade, detailed, multi-species investigations of low-Z impurity transport have been undertaken in dedicated experiments, resulting in an extensive database of helium and boron density profiles over a wide range of parameters relevant for turbulent transport (normalised gradients of the electron density, the ion temperature, and the toroidal rotation profiles, the collisionality and the electron to ion temperature ratio). Helium is not found to accumulate in the parameter space investigated, as the shape of the helium density profile follows largely that of the electron density. Helium is observed to be as peaked as the electron density at high electron cyclotron resonance heating fraction, and less peaked than the electron density at high neutral beam heating fraction. The boron density profile is found to be consistently less peaked than the electron density profile. Detailed comparisons of the experimental density gradients of both impurities with quasilinear gyrokinetic simulations have shown that a qualitative agreement between experiment and theory cannot always be obtained, with strong discrepancies observed in some cases.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Experimental characterization of the electron heat transport in low-density ASDEX upgrade plasmas
    Ryter, F
    Imbeaux, F
    Leuterer, F
    Fahrbach, HU
    Suttrop, W
    PHYSICAL REVIEW LETTERS, 2001, 86 (24) : 5498 - 5501
  • [12] Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade
    Casson, F. J.
    McDermott, R. M.
    Angioni, C.
    Camenen, Y.
    Dux, R.
    Fable, E.
    Fischer, R.
    Geiger, B.
    Manas, P.
    Menchero, L.
    Tardini, G.
    NUCLEAR FUSION, 2013, 53 (06)
  • [13] Non-parametric inference of impurity transport coefficients in the ASDEX Upgrade tokamak
    Nishizawa, T.
    Dux, R.
    McDermott, R. M.
    Sciortino, F.
    Cavedon, M.
    Schuster, C.
    Wolfrum, E.
    von Toussaint, U.
    Jansen Van Vuuren, A.
    Cruz-Zabala, D. J.
    Cano-Megias, P.
    Moon, C.
    NUCLEAR FUSION, 2022, 62 (07)
  • [14] EXPERIMENTAL INVESTIGATIONS OF HIGH-Z MATERIALS IN THE ASDEX-UPGRADE DIVERTOR
    ROTH, J
    NAUJOKS, D
    KRIEGER, K
    FIELD, A
    LIEDER, G
    HIRSCH, S
    JOURNAL OF NUCLEAR MATERIALS, 1995, 220 : 231 - 234
  • [15] Particle and impurity transport in the Axial Symmetric Divertor Experiment Upgrade and the Joint European Torus, experimental observations and theoretical understanding
    Angioni, C.
    Carraro, L.
    Dannert, T.
    Dubuit, N.
    Dux, R.
    Fuchs, C.
    Garbet, X.
    Garzotti, L.
    Giroud, C.
    Guirlet, R.
    Jenko, F.
    Kardaun, O. J. W. F.
    Lauro-Taroni, L.
    Mantica, P.
    Maslov, M.
    Naulin, V.
    Neu, R.
    Peeters, A. G.
    Pereverzev, G.
    Puiatti, M. E.
    Puetterich, T.
    Stober, J.
    Valovic, M.
    Valisa, M.
    Weisen, H.
    Zabolotsky, A.
    PHYSICS OF PLASMAS, 2007, 14 (05)
  • [16] Latest investigations on fluctuations, ELM filaments and turbulent transport in the SOL of ASDEX Upgrade
    Mueller, H. W.
    Adamek, J.
    Cavazzana, R.
    Conway, G. D.
    Fuchs, C.
    Gunn, J. P.
    Herrmann, A.
    Horacek, J.
    Ionita, C.
    Kallenbach, A.
    Kocan, M.
    Maraschek, M.
    Maszl, C.
    Mehlmann, F.
    Nold, B.
    Peterka, M.
    Rohde, V.
    Schweinzer, J.
    Schrittwieser, R.
    Vianello, N.
    Wolfrum, E.
    Zuin, M.
    NUCLEAR FUSION, 2011, 51 (07)
  • [17] Dynamic edge transport investigations at ASDEX Upgrade using gas puff modulation
    Schuster, C. U.
    Wolfrum, E.
    Goerler, T.
    Fable, E.
    Fischer, R.
    Griener, M.
    Tal, B.
    Angioni, C.
    Manz, P.
    Stroth, U.
    NUCLEAR FUSION, 2023, 63 (09)
  • [18] ELM flushing and impurity transport in the H-mode edge barrier in ASDEX Upgrade
    Puetterich, T.
    Dux, R.
    Janzer, M. A.
    McDermott, R. M.
    JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S334 - S339
  • [19] Understanding of the density profile shape, electron heat transport and internal transport barriers observed in ASDEX Upgrade
    Peeters, AG
    Angioni, C
    Apostoliceanu, M
    Pereverzev, GV
    Quigley, E
    Ryter, F
    Strintzi, D
    Jenko, F
    Fahrbach, U
    Fuchs, C
    Gehre, O
    Hobirk, J
    Kurzan, B
    Maggi, CF
    Manini, A
    McCarthy, PJ
    Meister, H
    Schweinzer, J
    Stober, J
    Suttrop, W
    Tardini, G
    NUCLEAR FUSION, 2005, 45 (09) : 1140 - 1147
  • [20] SOLPS-ITER modelling of helium transport, recycling and pumping at the ASDEX Upgrade tokamak
    Zito, A.
    Pan, O.
    Wischmeier, M.
    Kappatou, A.
    Kallenbach, A.
    Makarov, S. O.
    Bernert, M.
    Cavedon, M.
    Reiter, D.
    Stroth, U.
    ASDEX Upgrade Team
    NUCLEAR FUSION, 2025, 65 (04)