Relationships between Antarctic coastal and deep-sea particle fluxes:: implications for the deep-sea benthos

被引:16
|
作者
Isla, E
Gerdes, D
Palanques, A
Teixidó, N
Arntz, W
Puig, P
机构
[1] CSIC, Inst Ciencies Mar, CMIMA, Barcelona 08015, Spain
[2] Alfred Wegener Inst Polar & Marine Res, D-27568 Bremerhaven, Germany
关键词
D O I
10.1007/s00300-005-0046-9
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Downward particle fluxes measured by means of sediment traps to a shallow semi-closed bay (Johnson's Dock, Livingston Island) and to a deep basin in the western Bransfield Strait (Antarctic Peninsula) showed the important role of glaciers as sediment carriers and suppliers to the ocean in a continent without major rivers such as Antarctica. The trap moored in Johnson's Dock collected coarse sediment (> 1 mm mesh) not observed in the offshore traps, which mainly received fine sediment and faecal pellets. The annual total mass flux (TMF) to the coastal zone (15 m) was 900- and three times that to mid-depth (500 m) and near-bottom (1,000 m) traps, respectively. The fine sediment flux was especially important due to its biogenic particle contents. Despite the differences in TMF to the coastal zone and near the bottom in the deep basin, the organic carbon (OC) flux was similar in both environments (16 and 18 g m(-2), respectively), whereas biogenic silica (BSi) flux increased three times with depth (75 and 201 g m(-2), respectively). These fluxes imply that an important part of the particulate organic matter deposited in the coastal zone is advected basinward within the fine-particle flux. Thus, benthos in deep areas depends largely on the lateral transport of biogenic material produced in shallow environments near the coast. It is also proposed that the disintegration of Antarctic ice shelves and the consequent increment of ice calving may produce local devastations of ecological importance not only on the shallow but also on the rich Antarctic deep-sea benthic communities due to an increment of iceberg scouring and reduction of the organic matter supply.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条
  • [31] Contamination of the deep-sea
    Ballschmiter, KH
    Froescheis, O
    Jarman, WM
    Caillet, G
    MARINE POLLUTION BULLETIN, 1997, 34 (05) : 288 - 289
  • [32] Deep-sea freezer
    Kawagucci, Shinsuke
    Matsui, Yohei
    Nomaki, Hidetaka
    Chen, Chong
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [33] Deep-sea resources
    Scott, Erin
    NATURE REVIEWS EARTH & ENVIRONMENT, 2023, 4 (03) : 139 - 139
  • [34] DEEP-SEA SALVAGE
    HOLM, CH
    OCEANOLOGY INTERNATIONAL, 1968, 3 (04): : 30 - &
  • [35] SEASONALITY IN THE DEEP-SEA
    TYLER, PA
    OCEANOGRAPHY AND MARINE BIOLOGY, 1988, 26 : 227 - 258
  • [36] DEEP-SEA TRAWLING
    不详
    NATURE, 1953, 171 (4353) : 595 - 595
  • [37] DEEP-SEA DESIGNS
    ABRAHAMI, A
    ENGINEERING, 1985, 225 (06): : 388 - &
  • [38] DEEP-SEA BIOLOGY
    BETT, B
    MARINE POLLUTION BULLETIN, 1991, 22 (09) : 471 - 472
  • [39] DEEP-SEA DILEMMA
    Heffernan, Olive
    NATURE, 2019, 571 (7766) : 465 - 468
  • [40] Deep-sea activity
    不详
    GEOTIMES, 1998, 43 (04): : 8 - 8