On the origins of transport inefficiencies in mesoscopic networks

被引:4
|
作者
Toussaint, Sebastien [1 ]
Martins, Frederico [1 ]
Faniel, Sebastien [1 ]
Pala, Marco G. [2 ]
Desplanque, Ludovic [3 ]
Wallart, Xavier [3 ]
Sellier, Hermann [4 ,5 ]
Huant, Serge [4 ,5 ]
Bayot, Vincent [1 ]
Hackens, Benoit [1 ]
机构
[1] Catholic Univ Louvain, Inst Condensed Matter & Nanosci IMCN NAPS, B-1348 Louvain La Neuve, Belgium
[2] Univ Paris Saclay, Univ Paris Sud, Ctr Nanosci & Nanotechnol, CNRS, F-91405 Orsay, France
[3] Univ Lille, Univ Valenciennes, CNRS, Cent Lille,ISEN,UMR IEMN 8520, F-59000 Lille, France
[4] Univ Grenoble Alpes, Inst Neel, F-38042 Grenoble, France
[5] CNRS, F-38042 Grenoble, France
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
CONDUCTANCE OSCILLATIONS; QUANTUM; FLUCTUATIONS; DENSITY;
D O I
10.1038/s41598-018-21250-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A counter-intuitive behavior analogous to the Braess paradox is encountered in a two-terminal mesoscopic network patterned in a two-dimensional electron system (2DES). Decreasing locally the electron density of one channel of the network paradoxically leads to an increased network electrical conductance. Our low temperature scanning gate microscopy experiments reveal different occurrences of such puzzling conductance variations, thanks to tip-induced localized modifications of electron flow throughout the network's channels in the ballistic and coherent regime of transport. The robustness of the puzzling behavior is inspected by varying the global 2DES density, magnetic field and the tip-surface distance. Depending on the overall 2DES density, we show that either Coulomb Blockade resonances due to disorder-induced localized states or Fabry-Perot interferences tuned by the tip-induced electrostatic perturbation are at the origin of transport inefficiencies in the network, which are lifted when gradually closing one channel of the network with the tip.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Quantum transport in open mesoscopic cavities
    Bird, JP
    Ishibashi, K
    Aoyagi, Y
    Sugano, T
    Akis, R
    Ferry, DK
    Pivin, DP
    Connolly, KM
    Taylor, RP
    Newbury, R
    Olatona, DM
    Micolich, A
    Wirtz, R
    Ochiai, Y
    Okubo, Y
    CHAOS SOLITONS & FRACTALS, 1997, 8 (7-8) : 1299 - 1324
  • [42] Quantum chaos and transport in mesoscopic systems
    Altshuler, BL
    Biagini, C
    Patriarca, M
    FIELD THEORIES FOR LOW-DIMENSIONAL CONDENSED MATTER SYSTEMS: SPIN SYSTEMS AND STRONGLY CORRELATED ELECTRONS, 2000, 131 : 235 - 269
  • [43] Josephson transport in complex mesoscopic structures
    Wendin, G
    Shumeiko, VS
    SUPERLATTICES AND MICROSTRUCTURES, 1996, 20 (04) : 569 - 573
  • [44] FOURIER INVERSION THEOREM IN MESOSCOPIC TRANSPORT
    ZIRNBAUER, MR
    PHYSICA A, 1990, 167 (01): : 132 - 139
  • [45] Electron transport through mesoscopic ring
    Maiti, Santanu K.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 36 (02): : 199 - 204
  • [46] Formalism of nonlinear transport in mesoscopic conductors
    Song, AM
    PHYSICAL REVIEW B, 1999, 59 (15) : 9806 - 9809
  • [47] Phonon Transport Across Mesoscopic Constrictions
    Singh, Dhruv
    Murthy, Jayathi Y.
    Fisher, Timothy S.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2011, 133 (04):
  • [48] Transport properties of mesoscopic graphene rings
    Xu, N.
    Ding, J. W.
    Wang, B. L.
    Shi, D. N.
    Sun, H. Q.
    PHYSICA B-CONDENSED MATTER, 2012, 407 (03) : 335 - 339
  • [49] Quantum transport modeling in mesoscopic structures
    Schoenmaker, W
    Magnus, W
    Sorée, B
    Van Rossum, M
    Devreese, JT
    Fomin, VM
    Balaban, SN
    Pokatilov, EP
    Gladin, VN
    2000 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, CAS 2000 PROCEEDINGS, 2000, : 295 - 300
  • [50] Electron Waiting Times in Mesoscopic Transport
    Flindt, Christian
    Albert, Mathias
    Thomas, Konrad H.
    Haack, Geraldine
    Buettiker, Markus
    2013 22ND INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2013,