On the origins of transport inefficiencies in mesoscopic networks

被引:4
|
作者
Toussaint, Sebastien [1 ]
Martins, Frederico [1 ]
Faniel, Sebastien [1 ]
Pala, Marco G. [2 ]
Desplanque, Ludovic [3 ]
Wallart, Xavier [3 ]
Sellier, Hermann [4 ,5 ]
Huant, Serge [4 ,5 ]
Bayot, Vincent [1 ]
Hackens, Benoit [1 ]
机构
[1] Catholic Univ Louvain, Inst Condensed Matter & Nanosci IMCN NAPS, B-1348 Louvain La Neuve, Belgium
[2] Univ Paris Saclay, Univ Paris Sud, Ctr Nanosci & Nanotechnol, CNRS, F-91405 Orsay, France
[3] Univ Lille, Univ Valenciennes, CNRS, Cent Lille,ISEN,UMR IEMN 8520, F-59000 Lille, France
[4] Univ Grenoble Alpes, Inst Neel, F-38042 Grenoble, France
[5] CNRS, F-38042 Grenoble, France
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
CONDUCTANCE OSCILLATIONS; QUANTUM; FLUCTUATIONS; DENSITY;
D O I
10.1038/s41598-018-21250-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A counter-intuitive behavior analogous to the Braess paradox is encountered in a two-terminal mesoscopic network patterned in a two-dimensional electron system (2DES). Decreasing locally the electron density of one channel of the network paradoxically leads to an increased network electrical conductance. Our low temperature scanning gate microscopy experiments reveal different occurrences of such puzzling conductance variations, thanks to tip-induced localized modifications of electron flow throughout the network's channels in the ballistic and coherent regime of transport. The robustness of the puzzling behavior is inspected by varying the global 2DES density, magnetic field and the tip-surface distance. Depending on the overall 2DES density, we show that either Coulomb Blockade resonances due to disorder-induced localized states or Fabry-Perot interferences tuned by the tip-induced electrostatic perturbation are at the origin of transport inefficiencies in the network, which are lifted when gradually closing one channel of the network with the tip.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the origins of transport inefficiencies in mesoscopic networks
    Sébastien Toussaint
    Frederico Martins
    Sébastien Faniel
    Marco G. Pala
    Ludovic Desplanque
    Xavier Wallart
    Hermann Sellier
    Serge Huant
    Vincent Bayot
    Benoit Hackens
    Scientific Reports, 8
  • [2] Thermodynamics and transport in mesoscopic disordered networks
    Pascaud, M
    Montambaux, G
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1203 - 1211
  • [3] Observation of transport in mesoscopic honeycomb-shaped networks
    Samuilov, VA
    Butylina, IB
    Ksenevich, VK
    Kiss, G
    Remenyi, G
    SUPERLATTICES AND MICROSTRUCTURES, 1999, 25 (1-2) : 197 - 202
  • [4] Neural networks for modeling electron transport properties of mesoscopic systems
    Li, Kangyuan
    Lu, Junqiang
    Zhai, Feng
    PHYSICAL REVIEW B, 2020, 102 (06)
  • [5] Extrinsic origins of electrical transport anomalies near the superconducting transition in mesoscopic aluminum lines
    Burk, B
    Chien, CJ
    Chandrasekhar, V
    Strunk, C
    Bruyndoncx, V
    Van Haesendonck, C
    Moshchalkov, VV
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (03) : 1549 - 1553
  • [6] Multilateral & Bargaining in Networks: On the Prevalence of Inefficiencies
    Lee, Joosung
    OPERATIONS RESEARCH, 2018, 66 (05) : 1204 - 1217
  • [7] Avoiding evolutionary inefficiencies in innovation networks
    Pyka, Andreas
    PROMETHEUS, 2014, 32 (03) : 265 - 279
  • [8] Trends in mesoscopic transport
    Benjamin, C
    Jayannavar, AM
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2004, 27 (5-6): : 177 - 186
  • [9] Mesoscopic transport revisited
    Das, Mukunda P.
    Green, Frederick
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (10)
  • [10] Transport in Mesoscopic Systems
    Bid, Aveek
    Das, Anindya
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2016, 96 (02) : II - IV