The Fredholm index of quotient Hilbert modules

被引:0
|
作者
Fang, X [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the (multivariable) Fredholm index of a broad class of quotient Hilbert modules can be calculated by the Samuel multiplicity. These quotient M-Ddules include the Hardy, Bergman, or symmetric Fock spaces in several variables modulo submodules generated by multipliers. Our calculation is based on Gleason, Richter, Sundberg's results on the Fredholm index of the corresponding submodules. However, our main result (Theorem 2) establishes a formula with independent interests in a broader context. It relates the fibre dimension of a submodule, an analytic notion, to the Samuel multiplicity of the quotients module, an algebraic notion. When applied to multivariable Fredholm theory, we establish the following general principle which yields the above calculation of indices as a special case: The Fredholm index of a submodule is equal to its fibre dimension if and only if the index of the quotient module is equal to its Samuel multiplicity.
引用
收藏
页码:911 / 920
页数:10
相关论文
共 50 条
  • [1] Equivalence of quotient Hilbert modules
    Ronald G. Douglas
    Gadadhar Misra
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2003, 113 : 281 - 291
  • [2] Equivalence of quotient Hilbert modules
    Douglas, RG
    Misra, G
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (03): : 281 - 291
  • [3] Tensor product of quotient Hilbert modules
    Chattopadhyay, Arup
    Das, B. Krishna
    Sarkar, Jaydeb
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 727 - 747
  • [4] DESCRIPTION OF CERTAIN QUOTIENT HILBERT MODULES
    Ferguson, Sarah H.
    Rochberg, Richard
    OPERATOR THEORY 20, PROCEEDINGS, 2006, : 93 - +
  • [5] Quotient modules for some Hilbert modules over the bidisk
    Duan, Yongjiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 486 - 493
  • [6] Quotient morphisms, compositions, and Fredholm index
    Gheorghe, Dana
    Vasilescu, Florian-Horia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) : 2049 - 2061
  • [7] Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators
    Manuilov, Vladimir
    Troitsky, Evgenij
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (03)
  • [8] A Note on Semi-Fredholm Hilbert Modules
    Douglas, Ronald G.
    Sarkar, Jaydeb
    TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 143 - 150
  • [9] Equivalence of quotient Hilbert modules-II
    Douglas, Ronald G.
    Misra, Gadadhar
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (04) : 2229 - 2264
  • [10] SEMI-FREDHOLM THEORY ON HILBERT C*-MODULES
    Ivkovic, Stefan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 989 - 1016