CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data

被引:15
|
作者
Guan, Daogang [1 ]
Shao, Jiaofang [1 ]
Deng, Youping [2 ]
Wang, Panwen [3 ,4 ]
Zhao, Zhongying [1 ]
Liang, Yan [1 ]
Wang, Junwen [3 ,4 ,5 ]
Yan, Bin [1 ,6 ]
机构
[1] Hong Kong Baptist Univ, Dept Biol, Hong Kong, Hong Kong, Peoples R China
[2] Rush Univ, Med Ctr, Dept Internal Med & Biochem, Chicago, IL 60612 USA
[3] Univ Hong Kong, Dept Biochem, LKS Fac Med, Hong Kong, Hong Kong, Peoples R China
[4] Univ Hong Kong, HKU SIRI, LKS Fac Med, Hong Kong, Hong Kong, Peoples R China
[5] Univ Hong Kong, Ctr Genom Sci, LKS Fac Med, Hong Kong, Hong Kong, Peoples R China
[6] Nanjing Univ Chinese Med, Key Lab Acupuncture & Med Res Minister Educ, Nanjing 210046, Jiangsu, Peoples R China
关键词
REGULONS;
D O I
10.1093/bioinformatics/btt761
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
ChIP-seq technology provides an accurate characterization of transcription or epigenetic factors binding on genomic sequences. With integration of such ChIP-based and other high-throughput information, it would be dedicated to dissecting cross-interactions among multilevel regulators, genes and biological functions. Here, we devised an integrative web server CMGRN (constructing multilevel gene regulatory networks), to unravel hierarchical interactive networks at different regulatory levels. The newly developed method used the Bayesian network modeling to infer causal interrelationships among transcription factors or epigenetic modifications by using ChIP-seq data. Moreover, it used Bayesian hierarchical model with Gibbs sampling to incorporate binding signals of these regulators and gene expression profile together for reconstructing gene regulatory networks. The example applications indicate that CMGRN provides an effective web-based framework that is able to integrate heterogeneous high-throughput data and to reveal hierarchical 'regulome' and the associated gene expression programs.
引用
收藏
页码:1190 / 1192
页数:3
相关论文
共 50 条
  • [21] A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data
    Xing, B
    Van Der Laan, MJ
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2005, 12 (02) : 229 - 246
  • [22] MicroScope: ChIP-seq and RNA-seq software analysis suite for gene expression heatmaps
    Bohdan B. Khomtchouk
    James R. Hennessy
    Claes Wahlestedt
    BMC Bioinformatics, 17
  • [23] MicroScope: ChIP-seq and RNA-seq software analysis suite for gene expression heatmaps
    Khomtchouk, Bohdan B.
    Hennessy, James R.
    Wahlestedt, Claes
    BMC BIOINFORMATICS, 2016, 17
  • [24] Integrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions
    Van Nostrand, Eric L.
    Kim, Stuart K.
    GENOME RESEARCH, 2013, 23 (06) : 941 - 953
  • [25] Detection of Regulatory SNPs in Human Genome Using ChIP-seq ENCODE Data
    Bryzgalov, Leonid O.
    Antontseva, Elena V.
    Matveeva, Marina Yu.
    Shilov, Alexander G.
    Kashina, Elena V.
    Mordvinov, Viatcheslav A.
    Merkulova, Tatyana I.
    PLOS ONE, 2013, 8 (10):
  • [26] Exploring the Link Between Gene Expression and Protein Binding by Integrating mRNA Microarray and ChIP-Seq Data
    Ferdous, Mohsina Mahmuda
    Vinciotti, Veronica
    Liu, Xiaohui
    Wilson, Paul
    STATISTICAL LEARNING AND DATA SCIENCES, 2015, 9047 : 214 - 222
  • [27] Computational approaches to the integration of gene expression, ChIP-chip and sequence data in the inference of gene regulatory networks
    Cooke, Emma J.
    Savage, Richard S.
    Wild, David L.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2009, 20 (07) : 863 - 868
  • [28] Integrating Transcriptomic and ChIP-Seq Reveals Important Regulatory Regions Modulating Gene Expression in Myometrium during Implantation in Pigs
    Wang, Weiwei
    Cao, Caiqin
    Zhang, Botao
    Wang, Feiyu
    Deng, Dadong
    Cao, Jianhua
    Li, Hua
    Yu, Mei
    BIOMOLECULES, 2023, 13 (01)
  • [29] Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators
    Marcin Piechota
    Michal Korostynski
    Joanna Ficek
    Andrzej Tomski
    Ryszard Przewlocki
    BMC Bioinformatics, 17
  • [30] Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators
    Piechota, Marcin
    Korostynski, Michal
    Ficek, Joanna
    Tomski, Andrzej
    Przewlocki, Ryszard
    BMC BIOINFORMATICS, 2016, 17