Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis

被引:129
|
作者
Jin, M
Park, J
Lee, S
Park, B
Shin, J
Song, KJ
Ahn, TI
Hwang, SY
Ahn, BY
Ahn, K
机构
[1] Korea Univ, Coll Med, Grad Sch Biotechnol, Seoul 136701, South Korea
[2] Korea Univ, Coll Med, Div Life Sci, Seoul 136701, South Korea
[3] Korea Univ, Coll Med, Dept Microbiol, Seoul 136701, South Korea
[4] Seoul Natl Univ, Div Life Sci, Seoul, South Korea
[5] Catholic Univ Korea, Catholic Inst Med Sci, Res Inst Immunobiol, Seoul, South Korea
关键词
Hantaan virus; entry; clathrin-dependent endocytosis; endosome;
D O I
10.1006/viro.2001.1303
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The cellular entry of Hantaan virus (HTN) occurs through interactions with beta(3) integrins as cellular receptors, However the process of HTN infection following attachment to the cell surface is not well understood. Our data indicate that overexpression of a dominant-negative mutant dynamin inhibits HTN internalization and that compounds that block clathrin- but not caveolae-dependent endocytosis also reduce HTN infectivity. In addition, we show that HTN colocalizes with the clathrin heavy chain but not with caveolae. At the early phase of infection HTN colocalizes with EEA-1, an early endosome marker, and later, HTN colocalizes with LAMP-1,a lysosome marker. Cells treated with lysosomotropic, agents are largely resistant to infection, suggesting that a low-pH-dependent step is required for HTN infection. These findings demonstrate that HTN enters cells via the clathrin-coated pit pathway and uses low-pH-dependent intracellular compartments for infectious entry. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:60 / 69
页数:10
相关论文
共 50 条
  • [21] Constraints and frustration in the clathrin-dependent endocytosis pathway
    Bruna-Gauchoux, Julie
    Montagnac, Guillaume
    COMPTES RENDUS BIOLOGIES, 2022, 345 (02) : 43 - 56
  • [22] Enhanced Clathrin-Dependent Endocytosis in the Absence of Calnexin
    Li, Hao-Dong
    Liu, Wen-Xin
    Michalak, Marek
    PLOS ONE, 2011, 6 (07):
  • [23] Endocytosis of Gene Delivery Vectors: From Clathrin-dependent to Lipid Raft-mediated Endocytosis
    El-Sayed, Ayman
    Harashima, Hideyoshi
    MOLECULAR THERAPY, 2013, 21 (06) : 1118 - 1130
  • [24] Brefeldin A inhibits clathrin-dependent endocytosis and ion transport inCharainternodal cells
    Foissner, Ilse
    Hoeftberger, Margit
    Hoepflinger, Marion C.
    Sommer, Aniela
    Bulychev, Alexander A.
    BIOLOGY OF THE CELL, 2020, 112 (11) : 317 - 334
  • [25] Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis
    Peng, Tao
    Wang, Jia-Li
    Chen, Wei
    Zhang, Jun-Lei
    Gao, Na
    Chen, Zong-Tao
    Xu, Xiao-Feng
    Fan, Dong-Ying
    An, Jing
    CANADIAN JOURNAL OF MICROBIOLOGY, 2009, 55 (02) : 139 - 145
  • [26] Dynamin- and Clathrin-Dependent Endocytosis in African Swine Fever Virus Entry
    Hernaez, Bruno
    Alonso, Covadonga
    JOURNAL OF VIROLOGY, 2010, 84 (04) : 2100 - 2109
  • [27] RLIP controls receptor-ligand signaling by regulating clathrin-dependent endocytosis
    Singhal, Sharad S.
    Salgia, Ravi
    Verma, Nisan
    Horne, David
    Awasthi, Sanjay
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2020, 1873 (01):
  • [28] Minimal Mesoscale Model for Protein-Mediated Vesiculation in Clathrin-Dependent Endocytosis
    Agrawal, Neeraj J.
    Nukpezah, Jonathan
    Radhakrishnan, Ravi
    PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (09)
  • [29] Tembusu virus enters BHK-21 cells through a cholesterol-dependent and clathrin-mediated endocytosis pathway
    Zhang, Lijiao
    Zhao, Dongmin
    Han, Kaikai
    Huang, Xinmei
    Liu, Yuzhuo
    Liu, Qingtao
    Yang, Jing
    Li, Shuang
    Li, Yin
    MICROBIAL PATHOGENESIS, 2020, 147
  • [30] hTAC internalizes via both clathrin-dependent and clathrin-independent endocytosis in mammalian cells
    Zhu, Xinyu
    Li, Min
    Xu, Xiaojun
    Zhang, Rui
    Zhang, Xiaofei
    Ma, Zhuo
    Lu, Jingze
    Xu, Tao
    Hou, Junjie
    Song, Eli
    PROTEIN & CELL, 2018, 9 (10) : 896 - 901