A steep-slope transistor based on abrupt electronic phase transition

被引:318
|
作者
Shukla, Nikhil [1 ]
Thathachary, Arun V. [1 ]
Agrawal, Ashish [1 ]
Paik, Hanjong [2 ]
Aziz, Ahmedullah [1 ]
Schlom, Darrell G. [2 ,3 ]
Gupta, Sumeet Kumar [1 ]
Engel-Herbert, Roman [4 ]
Datta, Suman [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[3] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
METAL-INSULATOR-TRANSITION; FIELD-EFFECT TRANSISTORS; MOTT TRANSITION; VO2; PEIERLS; HUBBARD; DEVICE; OXIDES; VIEW; SHOW;
D O I
10.1038/ncomms8812
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Steep-Slope Transistors Based on Chiral Graphene Nanoribbons With Intrinsic Cold Source
    Ye, Shizhuo
    Wang, Zifeng
    Wang, Hao
    Huang, Qijun
    He, Jin
    Chang, Sheng
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (08) : 4123 - 4128
  • [32] RF-Powered Systems Using Steep-Slope Devices
    Li, Xueqing
    Heo, Unsuk Dennis
    Ma, Kaisheng
    Narayanan, Vijaykrishnan
    Liu, Huichu
    Datta, Suman
    2014 IEEE 12TH INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2014, : 73 - 76
  • [33] Ferroelectric HfZrOx-based MoS2 negative capacitance transistor with ITO capping layers for steep-slope device application
    Xu, Jing
    Jiang, Shu-Ye
    Zhang, Min
    Zhu, Hao
    Chen, Lin
    Sun, Qing-Qing
    Zhang, David Wei
    APPLIED PHYSICS LETTERS, 2018, 112 (10)
  • [34] STEEP-SLOPE LOGGING SYSTEM SOUGHT FOR BRITISH-COLUMBIA
    OVEREND, M
    CANADIAN FOREST INDUSTRIES, 1978, 98 (04) : 38 - 40
  • [35] Ambipolar steep-slope nanotransistors with Janus MoSSe/graphene heterostructures
    Zhang, Xinjiang
    Huang, Anping
    Xiao, Zhisong
    Wang, Mei
    Zhang, Jing
    Chu, Paul K.
    Nanotechnology, 2023, 34 (01):
  • [36] Ambipolar steep-slope nanotransistors with Janus MoSSe/graphene heterostructures
    Zhang, Xinjiang
    Huang, Anping
    Xiao, Zhisong
    Wang, Mei
    Zhang, Jing
    Chu, Paul K.
    NANOTECHNOLOGY, 2023, 34 (01)
  • [37] Performance Evaluation of Transition Metal Dichalcogenides Based Steep Subthreshold Slope Tunnel Field Effect Transistor
    Prateek Kumar
    Maneesha Gupta
    Kunwar Singh
    Silicon, 2020, 12 : 1857 - 1864
  • [38] Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow
    Oldroyd, Holly J.
    Pardyjak, Eric R.
    Higgins, Chad W.
    Parlange, Marc B.
    BOUNDARY-LAYER METEOROLOGY, 2016, 161 (03) : 405 - 416
  • [39] Performance Evaluation of Transition Metal Dichalcogenides Based Steep Subthreshold Slope Tunnel Field Effect Transistor
    Kumar, Prateek
    Gupta, Maneesha
    Singh, Kunwar
    SILICON, 2020, 12 (08) : 1857 - 1864
  • [40] Stability Analysis of Concrete Block Anchor on Steep-Slope Floating Breakwater
    Sujantoko
    Armono, Haryo Dwito
    Djatmiko, Eko Budi
    Putra, Risandi Dwirama
    FLUIDS, 2022, 7 (08)