Catalytic Activity of Titania-Supported Core-Shell Fe3O4@Au NanoCatalysts for CO Oxidation

被引:19
|
作者
Gaur, Sarthak [1 ,2 ]
Johansson, Sandra [3 ]
Mohammad, Faruq [4 ,5 ,6 ]
Kumar, Challa S. S. R. [6 ]
Spivey, James J. [1 ,2 ]
机构
[1] Louisiana State Univ, CALC D, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA
[3] Royal Inst Technol, Sch Chem Sci & Engn, SE-10044 Stockholm, Sweden
[4] So Univ, Dept Environm Toxicol, Baton Rouge, LA 70813 USA
[5] A&M Coll, Baton Rouge, LA 70813 USA
[6] CAMD, Baton Rouge, LA 70806 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 42期
关键词
OXIDE COMPOSITE NANOPARTICLES; IRON-OXIDE; GOLD CATALYSTS; MAGNETIC NANOPARTICLES; DUMBBELL NANOPARTICLES; AU/TIO2; CATALYST; CARBON-MONOXIDE; TEMPERATURE; REDUCTION; HYDROGEN;
D O I
10.1021/jp3045725
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In continuation of our previous work (J. Phys. Chem. Lett. 2010, 1(20), 3141 and J. Phys. Chem. C 2010, 114 (45), 19194), Fe3O4@Au core-shell types of nanoparticles were prepared by coating superparamagnetic iron oxide nanoparticles (SPIONS; similar to 4.9 nm) with a thin layer of gold (similar to 0.5 nm) and supported on microporous TiO2. To remove the ligands attached to nanoparticles, the catalyst was treated at 200, 300, 400, and 500 degrees C in either (a) a reducing atmosphere with H-2/Ar or (b) an oxidizing atmosphere with O-2/He. The synthesized nanoparticles and freshly prepared catalysts were characterized by HRTEM, which revealed that the size of the Fe3O4@Au nanoparticles was 5.34 +/- 0.71 nm and that of Fe3O4@Au/TiO2 was 5.96 +/- 0.71 nm. Fresh and pretreated programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. To test the activity of Fe3O4@Au/TiO2 catalysts, CO oxidation was performed over catalysts from 30 to 500 degrees C. Results showed that the catalyst treated with H-2/Ar at 500 degrees C had a lower light-off temperature and the highest CO conversion (similar to 68%) at 300 degrees C; however, such a treatment also resulted in catalyst sintering, leading to a net increase in particle size to 7.87 +/- 1.59 nm. The higher catalytic activity of the catalyst treated with H-2 at 500 degrees C can be attributed to the copresence of Fe-0 and Au-0 in the catalyst, the complete removal of organic ligands from the catalyst surface, and possibly the synergistic interaction between Au and Fe.
引用
收藏
页码:22319 / 22326
页数:8
相关论文
共 50 条
  • [21] Formation of Fe3O4@Au Core-shell Nanoparticles as a Dual Contrast Agent for MR and CT Imaging
    Cai Hong-dong
    Shen Ming-wu
    Shi Xiang-yang
    2011 INTERNATIONAL FORUM ON BIOMEDICAL TEXTILE MATERIALS, PROCEEDINGS, 2011, : 51 - 56
  • [22] Engineering core-shell mesoporous silica and Fe3O4@Au nanosystems for targeted cancer therapeutics: a review
    Pathania, Himani
    Chauhan, Priyanka
    Chaudhary, Vishal
    Khosla, Ajit
    Neetika, Sunil
    Kumar, Sunil
    Gaurav
    Sharma, Mamta
    BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, 2024, 40 (04) : 3653 - 3681
  • [23] Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone
    Chen, Ruipeng
    Sun, Yunfeng
    Huo, Bingyang
    Mao, Zefeng
    Wang, Xiaojuan
    Li, Shiyu
    Lu, Ran
    Li, Shuang
    Liang, Jun
    Gao, Zhixian
    ANALYTICA CHIMICA ACTA, 2021, 1180
  • [24] Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation
    Michelle Lukosi
    Chengcheng Tian
    Xinyi Li
    Shannon M. Mahurin
    Harry M. Meyer
    Guo Shiou Foo
    Sheng Dai
    Catalysis Letters, 2018, 148 : 2315 - 2324
  • [25] Core-Shell Fe3O4@Au Nanorod-Loaded Gels for Tunable and Anisotropic Magneto- and Photothermia
    Rincon-Iglesias, Mikel
    Rodrigo, Irati
    Berganza, Leixuri B.
    Abu Serea, Esraa Samy
    Plazaola, Fernando
    Lanceros-Mendez, Senentxu
    Lizundia, Erlantz
    Reguera, Javier
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 7130 - 7140
  • [26] Bi-phase dispersible Fe3O4@Au core-shell multifunctional nanoparticles: synthesis, characterization and properties
    Ma, Chenguang
    Shao, Hongqin
    Zhan, Shixia
    Hou, Peng
    Zhang, Xiaoyan
    Chai, Yun
    Liu, Hongling
    COMPOSITE INTERFACES, 2019, 26 (06) : 537 - 549
  • [27] Anisotropic core-shell Fe3O4@Au magnetic nanoparticles and the effect of the immunomagnetic separation volume on the capture efficiency
    Zengin, Adem
    Bozkurt, Akif
    Boyaci, Ismail Hakki
    Ozcan, Sadan
    Daniel, Philippe
    Lagarde, Fabienne
    Gibaud, Alain
    Cetin, Demet
    Suludere, Zekiye
    Guttmann, Peter
    Tamer, Ugur
    PURE AND APPLIED CHEMISTRY, 2014, 86 (06) : 967 - 978
  • [28] Fe3O4@Au core-shell hybrid nanocomposite for MRI-guided magnetic targeted photo-chemotherapy
    Khani, Tahereh
    Alamzadeh, Zahra
    Sarikhani, Abolfazl
    Mousavi, Mahdie
    Mirrahimi, Mehri
    Tabei, Mousa
    Irajirad, Rasoul
    Abed, Ziaeddin
    Beik, Jaber
    LASERS IN MEDICAL SCIENCE, 2022, 37 (05) : 2387 - 2395
  • [29] Tunable random lasing in Au@Fe3O4, Fe3O4@Au core shell nanoparticles under external magnetic field
    A-Jarah, Naheda H.
    Wasfi, Ahmed S.
    Hamidi, S. M.
    OPTICS AND LASER TECHNOLOGY, 2022, 153
  • [30] Monosized Core-Shell Fe3O4(Fe)/Au Multifunctional Nanocrystals
    Liu, Hong-Ling
    Wu, Jun-Hua
    Min, Ji Hyun
    Lee, Ju Hun
    Kim, Young Keun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 754 - 758