Convergence behavior of the random phase approximation renormalized correlation energy (vol 95, 195158, 2017)

被引:0
|
作者
Bates, Jefferson E.
Sensenig, Jonathon
Ruzsinszky, Adrienn
机构
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.97.039905
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [41] RANDOM PHASE APPROXIMATION GROUND-STATE CORRELATION-ENERGY OF AN INTERACTING PHONON SYSTEM
    LU, L
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1986, 323 (02): : 223 - 226
  • [42] INTERACTION ENERGIES BETWEEN CLOSED-SHELL SYSTEMS - CORRELATION ENERGY IN RANDOM PHASE APPROXIMATION
    SZABO, A
    OSTLUND, NS
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1977, : 389 - 395
  • [43] Fully renormalized quasiparticle random-phase approximation fulfills Ikeda sum rule exactly
    Rodin, V
    Faessler, A
    PHYSICAL REVIEW C, 2002, 66 (05): : 4
  • [44] Self-consistent and renormalized particle-particle random phase approximation in a schematic model
    de Passos, EJV
    Piza, AFRD
    Krmpotic, F
    PHYSICAL REVIEW C, 1998, 58 (03): : 1841 - 1844
  • [45] Static Subspace Approximation for Random Phase Approximation Correlation Energies: Implementation and Performance
    Weinberg, Daniel
    Hull, Olivia A.
    Clary, Jacob M.
    Sundararaman, Ravishankar
    Vigil-Fowler, Derek
    Del Ben, Mauro
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (18) : 8237 - 8246
  • [46] Assessment of correlation energies based on the random-phase approximation
    Paier, Joachim
    Ren, Xinguo
    Rinke, Patrick
    Scuseria, Gustavo E.
    Grueneis, Andreas
    Kresse, Georg
    Scheffler, Matthias
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [47] Random-phase approximation correlation methods for molecules and solids
    Hesselmann, A.
    Goerling, A.
    MOLECULAR PHYSICS, 2011, 109 (21) : 2473 - 2500
  • [48] Random phase approximation correlation energy using a compact representation for linear response functions: application to solids
    Kaoui, Fawzi
    Rocca, Dario
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (03)
  • [49] From semilocal density functionals to random phase approximation renormalized perturbation theory: A methodological assessment of structural phase transitions
    Sengupta, Niladri
    Bates, Jefferson E.
    Ruzsinszky, Adrienn
    PHYSICAL REVIEW B, 2018, 97 (23)
  • [50] The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach
    Scuseria, Gustavo E.
    Henderson, Thomas M.
    Sorensen, Danny C.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (23):