Cavitation during grain-boundary-sliding deformation in an AZ61 magnesium alloy

被引:20
|
作者
Takigawa, Yorinobu [1 ]
Aguirre, Juan Velazquez [1 ]
Taleff, Eric M. [2 ]
Higashia, Kenji [1 ]
机构
[1] Osaka Prefecture Univ, Dept Mat Sci, Sakai, Osaka 5998531, Japan
[2] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
关键词
Magnesium alloy; Cavitation; Grain-boundary sliding; Dominant diffusion process;
D O I
10.1016/j.msea.2008.06.026
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cavitation behavior has been investigated in a relatively coarse-grained AZ61 alloy deformed under two conditions for which grain-boundary sliding (GBS) creep controls plastic flow and which produce the same flow stress of 10 MPa. At a strain rate of 10(-5) s(-1) and a temperature of 573 K, GBS creep is rate controlled by grain-boundary diffusion, D(GB). At a strain rate of 2 x 10(-4) s(-1) and a temperature of 648 K, GBS creep is rate controlled by lattice diffusion, D(L). Tensile elongation is slightly greater when D(GB) accommodates GBS deformation. Despite accommodation of GBS by different diffusion mechanisms, cavity evolution under both deformation conditions is quite similar. Cavity volume percent increases similarly with strain under both conditions, as does the radius of the largest cavities. Cavity areal number density distributions are similar between the different deformation conditions when strain is a constant. All the features observed for cavitation indicate that cavity growth is plasticity controlled under both deformation conditions. The theory of plasticity-controlled cavity growth is in very good agreement with experimental data produced for this investigation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 50 条
  • [21] Dynamic recrystallization behavior of AZ61 magnesium alloy
    Zhou, HT
    Yan, AQ
    Liu, CM
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2005, 15 (05) : 1055 - 1061
  • [22] Dry sliding wear behavior of hot deformed magnesium AZ61 alloy as influenced by the sliding conditions
    El-Morsy, Abdel-Wahab
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 473 (1-2): : 330 - 335
  • [23] Dynamic recrystallization behavior of AZ61 magnesium alloy
    周海涛
    严安庆
    刘楚明
    Transactions of Nonferrous Metals Society of China, 2005, (05) : 103 - 109
  • [24] Metadynamic recrystallization behavior of AZ61 magnesium alloy
    Maghsoudi, M. H.
    Zarei-Hanzaki, A.
    Changizian, P.
    Marandi, A.
    MATERIALS & DESIGN, 2014, 57 : 487 - 493
  • [25] Deformation behavior of AZ61 magnesium alloy systematically rolled and annealed at 450 °C
    Sulkowski, B.
    Palka, P.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2016, 54 (03): : 147 - 151
  • [26] Effect of Zinc and Severe Plastic Deformation on Mechanical Properties of AZ61 Magnesium Alloy
    Huang, Song-Jeng
    Wu, Sheng-Yu
    Subramani, Murugan
    MATERIALS, 2024, 17 (07)
  • [27] Evaluation of the Effects of SiCp on Hot Deformation Behavior and Microstructure of AZ61 Magnesium Alloy
    Yu-Chih Tzeng
    Hsieh Yi-Chiuan
    Journal of Materials Engineering and Performance, 2024, 33 : 1919 - 1930
  • [28] Hot deformation behavior and processing map of as-cast AZ61 magnesium alloy
    Xu, Yan
    Hu, Lianxi
    Deng, Taiqing
    Ye, Lei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 559 : 528 - 533
  • [29] Evaluation of the Effects of SiCp on Hot Deformation Behavior and Microstructure of AZ61 Magnesium Alloy
    Tzeng, Yu-Chih
    Yi-Chiuan, Hsieh
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (04) : 1919 - 1930
  • [30] Hot Cracking in AZ31 and AZ61 Magnesium Alloy
    Huang, C. J.
    Cheng, C. M.
    Chou, C. P.
    Chen, F. H.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (07) : 633 - 640