Line bundles on arithmetic surfaces and intersection theory

被引:1
|
作者
Jahnel, J
机构
[1] Mathematisches Institut, Universität Göttingen, 37073 Göttingen
关键词
D O I
10.1007/BF02567943
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For line bundles on arithmetic varieties we construct height functions using arithmetic intersection theory. In the case of an arithmetic surface, generically of genus g, for line bundles of degree g equivalence is shown to the height on the Jacobian defined by Theta. We recover the classical formula due to Faltings and Hriljac for the Neron-Tate height on the Jacobian in terms of the intersection pairing on the arithmetic surface.
引用
收藏
页码:103 / 119
页数:17
相关论文
共 50 条