Low-Rank and Sparse Optimization for GPCA with Applications to SARX system Identification

被引:0
|
作者
Konishi, Katsumi [1 ]
机构
[1] Kogakuin Univ, Dept Comp Sci, Fac Informat, Shinjuku Ku, Tokyo, Japan
关键词
MINIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a low-rank and sparse optimization approach to generalized principal component analysis (GPCA) problems. The GPCA problem has a lot of applications in control, system identification, signal processing, and machine learning, however, is a kind of combinatorial problems and NP hard in general. This paper formulates the GPCA problem as a low-rank and sparse optimization problem, that is, matrix rank and l(0) norm minimization problem, and proposes a new algorithm based on the iterative reweighed least squares (IRLS) algorithm. This paper applies this algorithm to the system identification problem of switched autoregressive exogenous (SARX) systems, where the model order of each submodel is unknown. Numerical examples show that the proposed algorithm can identify the switching sequence, system order and parameters of submodels simultaneously.
引用
收藏
页码:2687 / 2692
页数:6
相关论文
共 50 条
  • [21] Generalized Low-Rank Plus Sparse Tensor Estimation by Fast Riemannian Optimization
    Cai, Jian-Feng
    Li, Jingyang
    Xia, Dong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2588 - 2604
  • [22] Sparse and Low-Rank Joint Dictionary Learning for Person Re-Identification
    Sun, Jun
    Kong, Lingchen
    Qu, Biao
    MATHEMATICS, 2022, 10 (03)
  • [23] Low-rank, Sparse and Line Constrained Estimation: Applications to Target Tracking and Convergence
    Elnakeeb, Amr
    Mitra, Urbashi
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2283 - 2287
  • [24] Sparse regularized low-rank tensor regression with applications in genomic data analysis
    Le Ou-Yang
    Zhang, Xiao-Fei
    Yan, Hong
    PATTERN RECOGNITION, 2020, 107
  • [25] Sparse and low-rank multivariate Hawkes processes
    Bacry, Emmanuel
    Bompaire, Martin
    Gaiffas, Stephane
    Muzy, Jean-Francois
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [26] Pansharpening Based on Low-Rank and Sparse Decomposition
    Rong, Kaixuan
    Jiao, Licheng
    Wang, Shuang
    Liu, Fang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (12) : 4793 - 4805
  • [27] Sparse and low-rank multivariate hawkes processes
    Bacry, Emmanuel
    Bompaire, Martin
    Gaïffas, Stéphane
    Muzy, Jean-Francois
    Journal of Machine Learning Research, 2020, 21
  • [28] Low-rank and sparse embedding for dimensionality reduction
    Han, Na
    Wu, Jigang
    Liang, Yingyi
    Fang, Xiaozhao
    Wong, Wai Keung
    Teng, Shaohua
    NEURAL NETWORKS, 2018, 108 : 202 - 216
  • [29] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [30] NONNEGATIVE LOW-RANK SPARSE COMPONENT ANALYSIS
    Cohen, Jeremy E.
    Gillis, Nicolas
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8226 - 8230