ORDERED AND J-TRIVIAL SEMIGROUPS AS DIVISORS OF SEMIGROUPS OF LANGUAGES

被引:3
|
作者
Vernitski, Alexei [1 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester C04 3SQ, Essex, England
关键词
Product of languages; catenation of languages; semigroup of languages; monoid of languages; J-trivial semigroup; J-trivial monoid; positively ordered semigroup; ordered monoid;
D O I
10.1142/S021819670800486X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A semigroup of languages is a set of languages considered with (and closed under) the operation of catenation. In other words, semigroups of languages are subsemigroups of power-semigroups of free semigroups. We prove that a (finite) semigroup is positively ordered if and only if it is a homomorphic image, under an order-preserving homomorphism, of a (finite) semigroup of languages. Hence it follows that a finite semigroup is J-trivial if and only if it is a homomorphic image of a finite semigroup of languages.
引用
收藏
页码:1223 / 1229
页数:7
相关论文
共 50 条
  • [31] INTEGRALLY ORDERED SEMIGROUPS
    SATYANARAYANA, M
    NAGORE, CS
    SEMIGROUP FORUM, 1979, 17 (02) : 101 - 111
  • [32] Normally ordered semigroups
    Fernandes, Vitor H.
    GLASGOW MATHEMATICAL JOURNAL, 2008, 50 : 325 - 333
  • [33] ON FILTERS OF ORDERED SEMIGROUPS
    JAKUBIK, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1993, 43 (03) : 519 - 522
  • [34] On varieties of ordered semigroups
    Martin Kuřil
    Semigroup Forum, 2015, 90 : 475 - 490
  • [35] On separative ordered semigroups
    Kehayopulu, N
    Tsingelis, M
    SEMIGROUP FORUM, 1998, 56 (02) : 187 - 196
  • [36] On ordered semigroups which are semilattices of left simple semigroups
    Kehayopulu, Niovi
    Tsingelis, Michael
    MATHEMATICA SLOVACA, 2013, 63 (03) : 411 - 416
  • [37] On Ordered Ternary Semigroups
    Daddi, Vanita Rohit
    Pawar, Yashashree Shivajirao
    KYUNGPOOK MATHEMATICAL JOURNAL, 2012, 52 (04): : 375 - 381
  • [38] NATURALLY ORDERED SEMIGROUPS
    SATYANARAYANA, M
    NAGORE, CS
    SEMIGROUP FORUM, 1979, 18 (02) : 95 - 103
  • [39] PSEUDOORDER IN ORDERED SEMIGROUPS
    KEHAYOPULU, N
    TSINGELIS, M
    SEMIGROUP FORUM, 1995, 50 (03) : 389 - 392
  • [40] On varieties of ordered semigroups
    Kuril, Martin
    SEMIGROUP FORUM, 2015, 90 (02) : 475 - 490