On Some Sequences of Polynomials Generating the Genocchi Numbers

被引:0
|
作者
Svinin, A. K. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Matrosov Inst Syst Dynam & Control Theory, 134 Lermontova Str, Irkutsk 664033, Russia
关键词
Genocchi number; Gandhi polynomial;
D O I
10.3103/S1066369X20090078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider sequences of Genocchi numbers of the first and the second kind. For these numbers, an approach based on their representation using sequences of polynomials is developed. Based on this approach, for these numbers some identities generalizing the known identities are constructed.
引用
收藏
页码:76 / 84
页数:9
相关论文
共 50 条
  • [31] Some identities involving generalized Genocchi polynomials and generalized Fibonacci-Lucas sequences
    Zhang, ZZ
    Jin, JY
    FIBONACCI QUARTERLY, 1998, 36 (04): : 329 - 334
  • [32] A note on degenerate poly-Genocchi numbers and polynomials
    Kim, Hye Kyung
    Jang, Lee-Chae
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [33] A note on degenerate poly-Genocchi numbers and polynomials
    Hye Kyung Kim
    Lee-Chae Jang
    Advances in Difference Equations, 2020
  • [34] Novel Identities for q-Genocchi Numbers and Polynomials
    Araci, Serkan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [35] ON THE lambda-GENOCCHI POLYNOMIALS AND NUMBERS OF SECOND KIND
    Kwon, J. H.
    Lee, H. Y.
    Ryoo, C. S.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 35 (01): : 25 - 34
  • [36] Fixed points and dynamics on generating function of Genocchi numbers
    Lim, Dongkyu
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 933 - 939
  • [37] Some symmetrical properties of Genocchi numbers
    Zeng, J
    DISCRETE MATHEMATICS, 1996, 153 (1-3) : 319 - 333
  • [38] q-BERNSTEIN POLYNOMIALS ASSOCIATED WITH q-GENOCCHI NUMBERS AND POLYNOMIALS
    Rim, Seog-Hoon
    Jeong, Joo-Hee
    Lee, Sun-Jung
    Jin, Jeong-Hee
    Moon, Eun-Jung
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (06) : 1006 - 1013
  • [39] SOME FORMULAE OF GENOCCHI POLYNOMIALS OF HIGHER ORDER
    Corcino, Cristina B.
    Canete, Joy Ann A.
    Corcino, Roberto B.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2020, 11 (03): : 10 - 20
  • [40] On the new type of degenerate poly-Genocchi numbers and polynomials
    Lee, Dae Sik
    Kim, Hye Kyung
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)