共 50 条
Neurite Growth in 3D Collagen Gels With Gradients of Mechanical Properties
被引:143
|作者:
Sundararaghavan, Harini G.
[1
]
Monteiro, Gary A.
[1
]
Firestein, Bonnie L.
[2
]
Shreiber, David I.
[1
]
机构:
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08855 USA
[2] Rutgers State Univ, Dept Cell Biol & Neurosci, Piscataway, NJ 08855 USA
基金:
美国国家科学基金会;
关键词:
nerve regeneration;
gradients;
durotaxis;
microfluidics;
tissue engineering;
CROSS-LINKING;
BIOLOGICAL TISSUE;
GENIPIN;
CELLS;
RIGIDITY;
STIFFNESS;
D O I:
10.1002/bit.22074
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
We have designed and developed a microfluidic system to study the response of cells to controlled gradients of mechanical stiffness in 3D collagen gels. An 'H'-shaped, source-sink network was filled with a type I collagen solution, which self-assembled into a fibrillar gel. A 1D gradient of genipin-a natural crosslinker that also causes collagen to fluoresce upon crosslinking-was generated in the cross-channel through the 3D collagen gel to create a gradient of crosslinks and stiffness. The gradient of stiffness was observed via fluorescence. A separate, underlying channel in the microfluidic construct allowed the introduction of cells into the gradient. Neurites from chick dorsal root ganglia explants grew significantly longer down the gradient of stiffness than up the gradient and than in control gels not treated with genipin. No changes in cell adhesion, collagen fiber size, or density were observed following crosslinking with genipin, indicating that the primary effect of genipin was on the mechanical proper-ties of the gel. These results demonstrate that (1) the microfluidic system can be used to study durotactic behavior of cells and (2) neurite growth can be directed and enhanced by a gradient of mechanical properties, with the goal of incorporating mechanical gradients into nerve and spinal cord regenerative therapies.
引用
收藏
页码:632 / 643
页数:12
相关论文