Hamiltonian Reduction of Einstein's Equations without Isometries

被引:0
|
作者
Yoon, Jong Hyuk [1 ]
机构
[1] Konkuk Univ, Sch Phys, Seoul 143701, South Korea
关键词
SPACE; TIME;
D O I
10.1088/1742-6596/600/1/012068
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I apply the Hamiltonian reduction procedure to general spacetimes of 4 dimensions with no isometrics in the (2+2) formalism and find privileged spacetime coordinates. Physical time is chosen as the area element of the two dimensional cross-section of null hypersurfaces. The physical spatial coordinates are defined by equipotential surfaces on a given spacelike hypersurface of constant physical time. The physical Hamiltonian is manifestly local and positive-definite in the privileged coordinates. The complete set of Hamilton's equations is presented and it is found that they coincide with the Einstein's equations written in the privileged coordinates. This shows that the Hamiltonian reduction is a self-consistent procedure.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Possible Reinterpretation of Einstein’s Equations
    A. Bouda
    A. Belabbas
    International Journal of Theoretical Physics, 2010, 49 : 2630 - 2639
  • [32] A Possible Reinterpretation of Einstein's Equations
    Bouda, A.
    Belabbas, A.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (10) : 2630 - 2639
  • [33] Symmetries of the Einstein Hamiltonian
    Husain, V
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (02) : 203 - 211
  • [34] Hyperbolic reductions for Einstein's equations
    Friedrich, H
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (06) : 1451 - 1469
  • [35] Solving Einstein's equations on supercomputers
    Allen, G
    Goodale, T
    Lanfermann, G
    Radke, T
    Seidel, E
    Benger, W
    Hege, HC
    Merzky, A
    Massó, J
    Shalf, J
    COMPUTER, 1999, 32 (12) : 52 - +
  • [36] Multiparticle Solutions to Einstein's Equations
    Gomez, Humberto
    Jusinskas, Renann Lipinski
    PHYSICAL REVIEW LETTERS, 2021, 127 (18)
  • [37] REDUCTION OF EINSTEIN EQUATIONS FOR NONSTATIONARY CYLINDRICAL COSMIC STRINGS
    MONCRIEF, V
    PHYSICAL REVIEW D, 1989, 39 (02): : 429 - 433
  • [38] A new form of Einstein's equations
    Wallner, R. P.
    Journal of Mathematical Physics,
  • [39] Projective Invariance and Einstein's Equations
    Giovanni Giachetta
    Luigi Mangiarotti
    General Relativity and Gravitation, 1997, 29 : 5 - 18
  • [40] Einstein's equations as functional geodesics
    Nunez, D
    Quevedo, H
    Sanchez, A
    REVISTA MEXICANA DE FISICA, 1998, 44 (05) : 440 - 448