EXISTENCE OF SOLUTIONS TO NONLOCAL AND SINGULAR ELLIPTIC PROBLEMS VIA GALERKIN METHOD

被引:0
|
作者
Correa, Francisco Julio S. A. [1 ]
Menezes, Silvano D. B. [1 ]
机构
[1] Fed Univ Para, CCEN, Dept Matemat, BR-66075110 Belem, Para, Brazil
关键词
Nonlocal elliptic problems; Galerkin Method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of solutions to the nonlocal elliptic equation [GRAPHICS] with zero Dirichlet boundary conditions on a bounded and smooth domain of R-n. We consider the M-linear case with f is an element of H-1( Omega), and the sub-linear case f(u) = u(alpha), 0 < alpha < 1. Our main tool is the Galerkin method for both cases when M continuous and when M is discontinuous.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems
    Baoqiang Yan
    Tianfu Ma
    Boundary Value Problems, 2016
  • [22] The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems
    Yan, Baoqiang
    Ma, Tianfu
    BOUNDARY VALUE PROBLEMS, 2016,
  • [23] A priori bounds and existence of solutions for some nonlocal elliptic problems
    Barrios, Begona
    Del Pezzo, Leandro
    Garcia-Melian, Jorge
    Quaas, Alexander
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 195 - 220
  • [25] Existence and multiplicity of symmetric solutions for a class of singular elliptic problems
    Deng, Zhiying
    Huang, Yisheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2293 - 2303
  • [26] Existence of three weak solutions for some singular elliptic problems
    Khodabakhshi, Mehdi
    Hadjian, Armin
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (01) : 68 - 75
  • [27] EXISTENCE OF NONNEGATIVE SOLUTIONS TO SINGULAR ELLIPTIC PROBLEMS, A VARIATIONAL APPROACH
    Godoy, Tomas
    Guerin, Alfredo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (03) : 1505 - 1525
  • [28] Existence of solutions for a class of singular quasilinear elliptic resonance problems
    Jia, Gao
    Sun, Dong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (10) : 3055 - 3064
  • [29] Existence of two weak solutions for some singular elliptic problems
    Khodabakhshi, M.
    Aminpour, A. M.
    Afrouzi, G. A.
    Hadjian, A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 385 - 393
  • [30] Existence of two weak solutions for some singular elliptic problems
    M. Khodabakhshi
    A. M. Aminpour
    G. A. Afrouzi
    A. Hadjian
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 385 - 393