Dynamical Sampling Associated with the Fractional Fourier Transform

被引:0
|
作者
Zhang, Qingyue [1 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Fourier transform; dynamical sampling; Poisson summation formula; convolution and product theorem; shift-invariant spaces; SHIFT-INVARIANT; RECONSTRUCTION; SIGNALS; SPACES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we mainly study the dynamical sampling of sequence spaces and shift-invariant spaces in the fractional Fourier transform domains. We show that how to recover the signals in sequence spaces or shift-invariant spaces from their dynamical sampling values. We provide a necessary and sufficient condition for the dynamical sampling problem of sequence spaces and shift-invariant spaces in the fractional Fourier transform domains to be solvable. Our results generalize similar ones in the Fourier transform domains.
引用
收藏
页码:1109 / 1113
页数:5
相关论文
共 50 条
  • [41] Sampling expansion for irregularly sampled signals in fractional Fourier transform domain
    Liu, Xiaoping
    Shi, Jun
    Xiang, Wei
    Zhang, Qinyu
    Zhang, Naitong
    DIGITAL SIGNAL PROCESSING, 2014, 34 : 74 - 81
  • [42] Fractional Fourier transform of bandlimited periodic signals and its sampling theorems
    Sharma, KK
    Joshi, SD
    OPTICS COMMUNICATIONS, 2005, 256 (4-6) : 272 - 278
  • [43] Application of weighted-type fractional Fourier transform in sampling and reconstruction
    Shi, Jun
    Chi, Yong-Gang
    Sha, Xue-Jun
    Zhang, Nai-Tong
    Tongxin Xuebao/Journal on Communications, 2010, 31 (04): : 88 - 93
  • [44] Optical spectrum encryption in associated fractional Fourier transform and gyrator transform domain
    Hang Chen
    Xiaoping Du
    Zhengjun Liu
    Optical and Quantum Electronics, 2016, 48
  • [45] Optical spectrum encryption in associated fractional Fourier transform and gyrator transform domain
    Chen, Hang
    Du, Xiaoping
    Liu, Zhengjun
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (01) : 1 - 16
  • [46] Riesz transform associated with the fractional Fourier transform and applications in image edge detection
    Fu, Zunwei
    Grafakos, Loukas
    Lin, Yan
    Wu, Yue
    Yang, Shuhui
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 66 : 211 - 235
  • [47] Adaptive Sampling for Signals Associated with the Special Affine Fourier Transform
    Jiang, Yingchun
    Li, Yujie
    Yang, Jing
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, : 599 - 630
  • [48] Fundamental structure of Fresnel diffraction: natural sampling grid and the fractional Fourier transform
    Ozaktas, Haldun M.
    Arik, Sercan O.
    Coskun, Turker
    OPTICS LETTERS, 2011, 36 (13) : 2524 - 2526
  • [49] Reducing sampling error by prolate spheroidal wave functions and fractional Fourier transform
    Ding, JJ
    Pei, SC
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 217 - 220
  • [50] Pseudo-differential operator associated with the fractional Fourier transform
    Prasad, Akhilesh
    Kumar, Praveen
    MATHEMATICAL COMMUNICATIONS, 2016, 21 (01) : 115 - 126