Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact

被引:66
|
作者
Jing, Lin [1 ,2 ]
Su, Xingya [1 ]
Chen, De [1 ,3 ]
Yang, Fei [3 ]
Zhao, Longmao [4 ]
机构
[1] Southwest Jiaotong Univ, State Key Lab Tract Power, Chengdu 610031, Sichuan, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[3] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Guangdong, Peoples R China
[4] Taiyuan Univ Technol, Inst Appl Mech & Biomed Engn, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Sandwich beam; Layered-gradient core; Low-velocity impact; Energy absorption; Optimal design; FINITE-ELEMENT SIMULATION; DYNAMIC-RESPONSE; COMPRESSIVE STRAIN; PANELS; INDENTATION; OPTIMIZATION; RESISTANCE; HONEYCOMB; BEHAVIOR; SHELLS;
D O I
10.1016/j.tws.2018.11.011
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The low-velocity impact response of sandwich beams with aluminum alloy face-sheets and three core configurations (i.e., the positive layered-gradient core, negative layered-gradient core and non-gradient monolithic core) was first investigated by using a drop-weight machine. The impact bending tests were performed on specimens at five impact energy levels - 9.80 J, 22.05 J, 39.19 J, 61.24 J and 88.18 J - by varying the drop height of the weight. Based on experimental results, the corresponding numerical simulations and a multiobjective design optimization were performed. The experimental results show that all sandwich beams fail via the global bending deformation without local crack/fracture under lower initial impact energy, while they fail via larger bending deformation accompanied by obvious core tensile crack at mid-span and core shear at clamped ends with the increased initial impact energy. The resistance of both gradient core sandwich beams to impact flexure loading is weaker than that of non-gradient monolithic core sandwich beams. Simulation results indicate that the ratio of energy absorbed by core decreases with the increased impact energy, while the ratio of energy absorbed by face-sheets increases with the increased impact energy. The boundary condition is demonstrated to have great influence on the force-displacement response for all sandwich beams. Finally, the corresponding Pareto fronts representing a group of best trade-off designs were obtained.
引用
收藏
页码:227 / 244
页数:18
相关论文
共 50 条
  • [41] The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores
    Atas, Cesim
    Potoglu, Umut
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2016, 18 (02) : 215 - 228
  • [42] Low-velocity impact behavior of hollow core woven sandwich composite: Experimental and numerical study
    Hosseini, Seyyed Ahmad
    Sadighi, Mojtaba
    Moghadam, Reza Maleki
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (26) : 3285 - 3295
  • [43] Experimental and numerical study of low-velocity impact damage in sandwich panel with UHMWPE composite facings
    Yang, Bin
    Zhou, Qi
    Lee, Juhyeong
    Li, Yan
    Fu, Kunkun
    Yang, Dongmin
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 284
  • [44] Experimental and numerical study on the low-velocity impact response of thermoplastic composite corrugated sandwich panels
    Pan, Xin
    Chen, Liming
    Liu, Houchang
    Qin, Weiming
    Du, Bing
    Li, Weiguo
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2022, 24 (04) : 1828 - 1846
  • [45] Dynamic response and energy absorption of aluminum foam sandwich under low-velocity impact
    Wang, Huihui
    Xiao, Wei
    Zhao, Mingkai
    Pang, Lisha
    Jia, Jie
    Song, Xuding
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2024, 26 (04) : 507 - 523
  • [46] Dynamic response and energy absorption of aluminum foam sandwich under low-velocity impact
    Wang, Huihui
    Xiao, Wei
    Zhao, Mingkai
    Pang, Lisha
    Jia, Jie
    Song, Xuding
    Journal of Sandwich Structures and Materials, 2024, 26 (04): : 507 - 523
  • [47] Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact
    Zhang, Dahai
    Jiang, Dong
    Fei, Qingguo
    Wu, Shaoqing
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2016, 117 : 21 - 30
  • [48] Experimental and numerical investigation of the effect of graphene nanoparticles on the strength of sandwich structures under low-velocity impact
    Tavakol, Mahdi Rezvani
    Tooski, Mahdi Yarmohammad
    Jabbari, Mohsen
    Javadi, Mehrdad
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2023, 5 (01):
  • [49] Numerical simulation of composite grid sandwich structure under low-velocity impact
    Gao, Wei
    Yu, Zhiqiang
    Ma, Aijie
    Guo, Zhangxin
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2022, 29 (01) : 516 - 528
  • [50] Dynamic Response of Composite Sandwich Beams With Arbitrary Functionally Graded Cores Subjected to Low-Velocity Impact
    Malekzadeh, K.
    Khalili, S. M. R.
    Gorgabad, A. Veysi
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2015, 22 (08) : 605 - 618